
CHAPTER 10

Magnetism: Electricity’s Traveling
Companion

Again—force, field, and motion
Poles and currents
The force between two parallel currents
The magnitude of the magnetic field of a current
The direction of the magnetic field of a current
Motion of a charged object in a magnetic field
Solenoids
The earth’s magnetic field
Ampere’s law

The electron: an old friend turns out to be the elemental magnet
Spin and magnetic moment
Magnetic materials

Generating electricity: motional emf and Faraday’s law
The motional emf
The emf in terms of the change in the flux: Faraday’s law.

Magnetic forces have been known since iron-containing rocks were found in
antiquity. The magnetic compass was known in China in the second century,
and later made possible Columbus’s visit to America, but it was not until 1600
that Gilbert suggested that the earth was itself a giant magnet. Today current-
carrying coils can produce magnetic fields that are much stronger than those of
iron magnets. Most of the electric energy that we use comes from the motion of
wires in magnetic fields. Magnetic forces drive the motors in our fans and vac-
uum cleaners. And perhaps the most startling impact on our civilization comes
from the interplay of electric and magnetic fields that we call electromagnetic
waves.

We play with magnets from the time when we are children. We pick up pins
and nails with them and use them to stick notes to the refrigerator. The forces
that they exert are more familiar to us than electric forces, and it comes as a
surprise to learn that they are more complex.

The magnetic effects of electric currents were discovered in the early part
of the nineteenth century by Oersted, and Ampere soon suggested that the
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magnetism of iron is the result of internal currents. They were called amperian
currents, but their detection proved elusive.

There was no way to understand the situation in more detail at that time,
since electrons were not identified until near the end of the nineteenth century.
An additional obstacle was that it is an unforeseen property of electrons, their
spin, not discovered until a century afterAmpere’s suggestion, that is responsible
for the strong magnetic effects of iron that we call ferromagnetism. Ampere had
the right general idea, but the facts showed themselves to be more complicated
and also more interesting than could have been envisioned.

Each electron, and to a lesser extent each proton, is a little magnet. In addi-
tion, electrons are in orbit around the nuclei. As a result all materials are magnetic
to some extent. As with electric properties, the question becomes “Why are we
not more often aware of this?” Electric properties tend to cancel because there
are just as many positive as negative charges. A similar cancellation happens
with magnetic properties when there are many electrons. Surprisingly, the can-
cellation is sometimes less complete than in the electric case, especially in the
materials that we call magnetic, of which iron is the most important.

The origin of the magnetism of materials is now well understood in terms of
the properties of atoms and electrons.Today magnetism is a vital subject, under
intense investigation for its intrinsic interest and for its important applications,
such as magnetic recording and magnetic memories.

10.1 Again—force, field,
and motion

Poles and currents

Electric charges are everywhere, but we rarely
think about them or the electric forces between
them. Magnetic forces are more familiar. We
know them from toys and compasses, and we are
aware that the earth is a giant magnet. But what
gives rise to the magnetic forces? Is there some-
thing like the electric charges that are responsible
for electric forces?

Our first experience with this question may
be with a compass needle and its north and south
poles. If we have two of them, we see that a north
pole attracts a south pole and repels another
north pole, just as a positive charge attracts a neg-
ative charge and repels another positive charge.
But as we look further, the situation turns out to
be a good deal less simple. If we cut a compass
needle in half, we get two new magnets, each
with its north and south pole. In fact, all efforts
to get an isolated pole have failed.

In some ways the poles act like “magnetic
charges,” but, as the cutting of a magnet shows,
the two kinds cannot be separated. The clue

to a more fruitful approach came when Oer-
sted discovered in 1819 that magnets exert forces
on electric currents, that is, on moving charges.
Soon (in 1825) Ampere suggested that currents
play the same role for magnetism that charges
play for electricity. That turned out to be the
fundamental origin of magnetic effects: magnetic
forces are forces between moving charges, over
and above the electrostatic (Coulomb) forces,
and arise when charges are moving with respect
to each other.

The force between two
parallel currents
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If we take two wires, parallel to each other,
each with a current in the same direction, we
observe that they attract each other. Is that in
some ways analogous to the attraction between
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electric charges with opposite signs and to the
gravitational attraction between two objects?
Can we use this experiment as a basis for our
knowledge of magnetism, just as we used the
force law between charges as the basis for our
understanding of electricity? The answer is a
qualified “yes.” There are some similarities, but
also important differences.

Currents are not at points, as charges are.
We can think of parallel currents as “like”
currents and currents in opposite directions as
“unlike.” Experiments show that like currents
attract and unlike currents repel. This is oppo-
site to the force between charges. There are other
differences. If we change the separation between
the wires with the currents in them, and measure
the force of one on the other, we observe that the
force is proportional to 1

r , and not to 1
r2 , as in

Coulomb’s law.
We can’t really think of a wire with a current

as just ending somewhere in the middle of space.
In general, there can be a continuous current only
in a closed loop, i.e., in a complete circuit. That
means that we can’t have two straight wires, iso-
lated as in the diagram. As an approximation we
can imagine two very long wires, with the rest of
the circuit so far away that we don’t need to con-
sider it. This becomes the model that we use when
we talk of two infinitely long current-carrying
wires.

That raises another problem. The longer the
wires, with a given current, the greater is the
force on each. To separate the dependence on
length we need to talk about the force per unit
length, Fm

L .
We can now combine the observations. The

force (Fm) changes with the length of the wires
(L), the distance between them (r), and the mag-
nitudes of the currents (I1 and I2), so that the
magnitude of the force is given by

Fm

L
= k′ I1I2

r

k′ is the proportionality constant, which in
the SI system is 2 × 10−7 N/A2. We see that it
is very small, while the constant in Coulomb’s
law, k = 9 × 109 Nm2

C2 , is very large. In part this
reflects the fact that the Coulomb is a very large
unit, but also that magnetic forces tend to be
much smaller than electric forces. Just as the

constant in Coulomb’s law can be written as
1

4πε0
, k′ is often written as μ0

2π
, where μ is the

Greek mu.

EXAMPLE 1

Two parallel wires, each 4 m long, with currents of
4 A in opposite directions, are separated by 5 cm.
What is the force on each?

Ans.:
We will assume that the wires are sufficiently long,
and the distance between them sufficiently small, that
the relation for the force between infinitely long wires
gives an adequate approximation.

F = (4)(2 × 10−7) (4)(4)
.05 = 2.56 × 10−4 N.

The direction of the force is such that the wires
repel each other. We see that although four amperes
is a substantial current, the force is quite small.

The magnitude of the magnetic
field of a current

The relation for the magnetic force between
parallel currents is not as universally useful as
Coulomb’s law. It describes only what happens
in a special situation, and not even one that can
actually be realized. Nevertheless we can use it
to define the magnetic field.

As in the electric case, we separate the force
relation into two parts,

Fm

L
=

[
k′ I1

r

]
[I2]

We define the magnitude of the magnetic
field by saying that the infinitely long current,
I1, is the source of the magnetic field, B = k′ I1

r .
The second (finite) current, I2, with length L, by
being in this field, experiences a force, given by
Fm
L = BI2, or Fm = BLI2. Just as in the electric

case, the magnetic field is introduced only as an
aid to calculation, but is later seen to have an
independent existence of its own.

The direction of the magnetic
field of a current

We still have to define the direction of the mag-
netic field. This is not as simple as for the electric
field. In the electric case there is only a single
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direction that we have to think about in addition
to the field direction, and that is the direction of
the force. We let them both lie along the same
line, so that there is just one orientation for both
field and force.

The magnetic force is an interaction between
moving charges, so that there is one more direc-
tion that needs to be considered, namely the
direction of the current (or moving charge) on
which the force acts. That means that we have
three directions to keep track of: those of the
field, the force, and the current.

Experiments show that a current in the vicin-
ity of another current experiences a force. That’s
true for almost all angles between them. There
is just one direction of a current for which there
is no force on it. This single direction is the one
that we use to define the direction of the magnetic
field. We do that by defining the field direction so
that a current parallel to the field experiences no
magnetic force. A current at right angles to the
field experiences the maximum force. We’ll go on
to develop the relation between the size and ori-
entation of the force and the sizes and directions
of the magnetic field and the current.

We can do the experiment by actually using a test
current whose orientation we can change.To visu-
alize the deflection we can use a small cathode–ray
tube. This is a vacuum tube with a beam of
electrons. (Before their nature was understood,
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the electrons in such a beam were called cathode
rays.) A fluorescent material on the face of the tube
lights up (usually green) when hit by the electrons.
(Does that sound like a TV tube? Yes. Before the
development of flat-panel monitors, all computer
and TV screens were in cathode–ray tubes.)

We can move the tube around in the region
of a magnetic field and see the deflection of the
electron beam. The one direction along which
the beam is not deflected is the direction of the
magnetic field.

Another way to show the direction of the
magnetic field is with a compass needle. A small
needle made of iron, free to rotate, will line up
along the magnetic field.

B

Here, once more, is the current I1. Sur-
rounding it is its magnetic field B. With the help
of observations, using a small cathode–ray tube
or a compass needle, we can show that the direc-
tion of B is perpendicular to I1 and tangent to
circles whose center is on the wire, as in the
head-on view.

The diagram also shows a side view. At the
two points that are shown, the magnetic field is
perpendicular to the plane of the paper. We rep-
resent a vector perpendicular to the paper and
into the paper by a circle with a cross (like a feath-
ered arrow from the back) and a vector out of the



202 / Magnetism: Electricity’s Traveling Companion

paper by a circle with a dot (like an arrow seen
head-on). That still leaves us with two possibil-
ities. Is the field direction into the paper or out
of it? We choose it to be into the paper at the
point P.

Is that up to us? Doesn’t nature tell us what
to do? Isn’t this supposed to be an operational
definition?

The experiment tells us only about the force
and its direction. The field is a construct that we
have invented to help us talk about the force. We
can decide its direction, as long as the relation
between the field and the force is in accord with
the experimental observations.

B
I

I

This is what has been agreed on: grasp the
current with your right hand, so that your thumb
points in the direction of the current. Your fingers
then curl in the direction of the field lines. This
gives the directions that we show in both views.
(We’ll call this the first right-hand rule.)

Now let’s look at the force on a second cur-
rent, I2, in the magnetic field. We already know
that when I2 is in the direction of the magnetic
field, it experiences no force, because that’s how
we defined the direction of the field, and that the
maximum force occurs when I2 and B are at right
angles to each other. What happens when the
magnetic field and the current are at some other
angle? In that case we can separate the field into
two components. The component parallel to the
current does not lead to a force. Only the per-
pendicular component contributes to the force.

F
+B

I
1

I
2

The direction of the field B of I1 at the loca-
tion of I2 is into the plane of the paper. We can

now look at the force on I2 in that field. From the
experimental fact that the two currents attract
we know that the force on I2 is toward I1.

IL

B

F

F = IL     B+

Here is one of the various rules that have
been invented to remind us of the relation
between the three directions. Point the fingers of
your right hand along the direction of the cur-
rent. Now curl the fingers so that they point
in the direction of the field, letting the fingers
of the right hand go from pointing along the cur-
rent toward pointing along the magnetic field.
The thumb then points in the direction of the
magnetic force on the current. (We’ll call this the
second right-hand rule. It relates the directions
of the magnetic field, the current, and the mag-
netic force on the current. The first right-hand
rule relates the directions of the current and of
the magnetic field that it gives rise to.)

A shorthand way to write a relation that
describes both the magnitude and the direction of
the force is F = IL × B, where the vector L points
in the direction of the current.

C =A × B is called the cross-product or vector
product of the two vectors A and B. Its magnitude
is C = AB sin θ, where θ is the angle between A

and B and the direction of C is given by the second
right-hand rule.

The cross-product succinctly describes the
experimental result: the magnitude ILB sin θ is
zero when sin θ is zero, i.e., when the current and
the field are in the same direction. It is at its maxi-
mum when θ = 90◦, i.e., when the current and the
magnetic field are perpendicular.

EXAMPLE 2

(a) What are the units for the magnetic field?

(b) What is the magnetic field of a long wire with a
current of 4 A at a distance of 5 cm from it?
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A

B

C = A       B+

90 o90o

Ans.:
(a) From F = BLI, the units of B are the same as

those of F
LI , i.e., N

A m .
This unit is also called the tesla (T). Another

unit for B is the gauss, equal to 10−4 T.

(b) B = k′ I
r = (2 × 10−7) 4

.05 = 1.6 × 10−5 T.

EXAMPLE 3

A wire 30 cm long, carrying a current of 2 A in the
y direction, is in a uniform magnetic field of 0.8 T in
the x direction. What are the magnitude and direction
of the magnetic force on the wire?

Ans.:
The current and the magnetic field are at right angles,
so that F = ILB = (2)(0.3)(0.8) = 0.48 N.

The direction is given by the second right-hand
rule (and by the vector relation F = IL × B). The
magnetic force is at right angles both to the cur-
rent and to the magnetic field, into the plane of the
paper.

++++
B

F

I

EXAMPLE 4

For realistic descriptions we have to go beyond
infinitely long wires. Most often wires are in closed
loops.

A rectangular loop of wire has a width of 20 cm
and a length of 30 cm and carries a current of 4 A.
It is horizontal and suspended in a uniform magnetic

field (0.7 T in the x direction) in such a way that it
can turn about an axis through its center, parallel to
the long sides.

(a) What are the magnetic forces on each of the four
sides of the loop?

(b) What is the total magnetic force on the loop?

(c) What is the torque on the loop?

(d) What will be the subsequent motion of the loop?

Ans.:

B

F

F

I

(a) For a wire perpendicular to the field the magni-
tude of the force is ILB. Here this is so for the
two forces on the longer sides. The magnitude of
the force on each is (4)(0.3)(0.7) = 0.84 N. The
direction of each force is perpendicular both to
the field and to the current, so that one is up and
the other is down, as shown on the figure. The
two short sides are parallel to the field, and there
is no force on them.

(b) The two forces are in opposite directions so that
the total force on the loop is zero.

(c) Each of the two forces is 0.1 m from the axis of
rotation. This is the perpendicular distance from
the line of action of the force to the axis. The
magnitude of the torque of each is equal to the
product of this distance and the force, 0.1 m ×
0.84 N or 0.084 N. Both torques act to turn the
loop clockwise as seen in the diagram, and add
for a total torque of 0.168 Nm.

(d) The loop will start out with an angular acceler-
ation clockwise about the axis (the dotted line
in the diagram).

EXAMPLE 5

The same loop as in the previous example is rotated
through 90◦ so that it is at rest perpendicular to the
field. Answer the same questions as before.
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The orientation of the loop can be described by
specifying the direction of the line perpendicular or
normal to the loop. It is often just called the normal.
In this example the normal is parallel to the field. Of
the two possible directions of the normal we use the
one given by a variation of the first right-hand rule:
let the fingers of the right hand curl so as to follow
the current. The thumb then points in the direction of
the normal. Here the normal is in the same direction
as the field. In the previous example the normal is
perpendicular to the loop and up.

Ans.:
(a) The two long sides are perpendicular to the field.

The magnitude of the two forces on them is the
same as before. The short sides are also perpen-
dicular to the field. There are now also forces
on them, equal to (4)(0.2)(0.7) = 0.56 N. The
directions are shown on the figure. They are such
as to tend to stretch the loop.
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(b) Both pairs of forces add up to zero, so that the
total force is zero.

(c) This time the forces on the long sides act along
the same line, so that there is no torque. This
is also true about the two forces that act on the
short sides.

(d) There is no torque and no angular acceleration.
The loop is at rest to begin with and remains at
rest.

EXAMPLE 6

(a) Write a relation that describes the torque on the
loop of the previous examples as a function of
the angle that the normal to the loop makes with
the magnetic field.

(b) In the position of the previous example there
is no torque, and the loop will not continue to
turn. What change would cause it to continue
to have an angular acceleration and to con-
tinue to rotate through another half turn? What
would keep it rotating, as in an electric motor?
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Ans.:
(a) Let the angle between the normal to the loop and

the magnetic field be θ. The long sides (of length
L) are still perpendicular to the magnetic field.
The magnitude of the force on each of them is
ILB.

Let the short sides have length d. The forces
on them are in opposite directions, and they
do not contribute to the torque. The contribu-
tion to the torque of each of the forces on the
long sides is (ILB)( d

2 sin θ). The two torques
add, to give ILBd sin θ. Since Ld = A, the area
of the loop, the magnitude of the torque, τ, is
IAB sin θ. (Both the magnitude and the direc-
tion of the torque are given by the vector relation
τ = IA × B, where the vector A is in the direction
of the normal to the loop. The vector τ gives the
direction of the torque. It is related to the sense
of rotation by a rule analogous to the first right-
hand rule. The magnitude of the vector product
is IAB sin θ, where θ is the angle between the
vectors A and B.)

(b) The current would have to be reversed. (It
could also be the magnetic field that is reversed,
but this is usually more difficult.) The torque
would then also reverse, and the loop would
turn through another 180◦. For continuous
rotation, the current, and hence the torque,
would have to be reversed every half turn.
A built-in switch that makes this happen is
called a commutator. The diagram shows how
it works. A split ring is attached to the axis on
which the loop rotates and turns with it. The
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stationary brushes make contact with the half
rings, changing from one to the other each half
turn. The current in the loop changes direction
every half turn, but the current in the external
circuit (connected to the brushes) stays in the
same direction. This is the principle of the DC
motor, i.e., a motor whose current comes from
a battery or other source whose emf remains in
the same direction.

C

D

A B

C
D

EXAMPLE 7

The three previous examples show what happens to
a loop of wire carrying a current when it is in a mag-
netic field. The interaction between the current and
the field results in a torque, and the loop turns. The
magnitude of the torque is proportional to the cur-
rent. The galvanometer is a device that uses the torque
on a loop to measure the current. The figure shows
its essential features.

A wire coil is wound around the cylinder in the
middle. The cylinder and coil can turn in the field of
a permanent magnet. A needle pointing to a scale is
attached to the cylinder. When there is no current
in the coil a spring (not shown) fixes the orienta-
tion so that the needle points to the left end of the
scale.

+++
B

I

With a current in it, the loop rotates as a result
of the magnetic torque. The spring opposes this
motion. The loop turns until the magnitude of the
magnetic torque is equal to the opposing torque of the
spring. The larger the current, the larger the torque,
and the more the coil will rotate. The scale is marked
to indicate the magnitude of the current.

For the loops of the previous examples the
torque varies as sin θ, where θ is the angle between the
normal to the loop and the magnetic field. In a gal-
vanometer we want the magnetic torque to depend
only on the current and not on the position of the
loop, in other words, not on sin θ. This can be accom-
plished with a magnet that has curved pole pieces, as
on the diagram. The field is then radial, and remains
at right angles to the loop as it turns.

(a) Mark the direction of the forces of the magnetic
field on the coil.

(b) What is the relation between the torque on the
coil and the current through it?

(c) If the torque on the spring follows Hooke’s law,
what is the relation between the current and the
angle through which the coil turns?

Ans.:
(b) τ = IAB.

(c) Hooke’s law for the spring is τ = kθ. Hence kθ =
IAB. k, A, and B are fixed, so that the angle θ is
proportional to the current, I.

Motion of a charged object
in a magnetic field

We have talked about electrons moving in wires
as an electric current. Can they also move when
there is no wire, for example in air? It’s not so
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easy. First they have to be liberated from their
“home” atoms. And then they face the obstacle
of all the atoms that are in the way and prevent
them from moving freely.

Electrons travel through air in sparks and
lightning, and after they are emitted from radio-
active materials (when they are called beta rays).
But they move much more easily when the air
is removed, such as in x-ray tubes, vacuum
tube rectifiers, cyclotron chambers, and electron
microscopes.

One or more charges, moving through
empty space, represent a current. Let’s see how
we can adapt the relation that we have used for
the magnetic force on a current for this situation.

L

Look at a tube of length L in which charges
move at a speed v = L

t , so that each takes a time
t to traverse the tube. In that time all the charges
that were in the tube (a total charge Q) will have
left it. The ones that started out at the left-hand
end will just make it to the other side. All the oth-
ers will get further and pass the right-hand end.
The current is the rate at which charge passes
any cross section. The direction of the current
is the same as the direction of the velocity of a
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positive charge and opposite to the direction of
the velocity of a negative charge. It is therefore
I = Q

t . Hence Q = It and Qv = Ivt = IL. We
see that we can replace IL in the force law by
Qv: the force on a current of length L in a field
B perpendicular to it is F = ILB, and the force
on a charge moving with velocity v is QvB.

These relations apply if the current (or the
velocity of the moving charge) is perpendicular
to the magnetic field. If a particle moves paral-
lel to the field there will be no force on it and
it will continue with constant velocity. The rela-
tion that gives the force on the moving charge
for all angles between the field and the velocity
of the charge is F = Qv × B. The magnitude of
the force is QvB sin θ, and its direction is given
by the second right-hand rule.

The figure shows what happens. The mag-
netic field is uniform, i.e., its magnitude and
direction are the same everywhere. When the
velocity is v1, at right angles to the field, there is
a force, and hence an acceleration, at right angles
to v1. The direction of the motion changes. With
the velocity changed (in direction but not in mag-
nitude) to v2, the magnetic force is still at right
angles to the field and also to the new velocity.
As the charge moves, the velocity vector contin-
ues to change direction, and so does the force.
The result is that the charge moves in a circle, in
a plane perpendicular to the field.

In a magnetic field the magnetic force on a
charge is always perpendicular to the direction
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of motion of the charge. Hence it can change the
direction of the motion, but not the magnitude
of the velocity or the particle’s kinetic energy.

If the velocity is at an angle to the field, then
the component parallel to the field will continue
unchanged. The perpendicular component, on
the other hand, will cause circular motion in the
plane perpendicular to the field. The two together
will lead to spiral motion.

We got fairly far, starting with the force
between two infinitely long wires, even though
we knew from the start that this was a special
case. Can we do better? Yes, but at consider-
able cost in complexity. It is possible to write
a relation that describes the contribution to the
magnetic field of a tiny (“infinitesimal”) piece of
current. The contributions from all the pieces can
then be added. We won’t do that here.

EXAMPLE 8

Circular motion of a charge in a magnetic field

There is a uniform vertical magnetic field of 0.1 T in
a region. A charge of 0.1 C enters the field region
traveling horizontally with a velocity of 20 m/s.

(a) What is the force on the charge?

(b) What is the path of the charge? Describe it
quantitatively.

Ans.:
(a) For a charge moving at right angles to a magnetic

field F = qvB = (0.1)(20)(0.1) = 0.2 N.

(b) The path is a circle in the plane perpendicular to
the magnetic field. We can find the radius of the
circular path by noting that the centripetal force
is provided by the magnetic force, i.e., qvB =
mv2

r . To calculate the size of the radius we need
to know the mass. Let’s say it is 10−3 kg: r =
mv
qB = (10−3)(20)

(0.1)(0.1) = 2 m.
The direction of the force, and hence of the

path, can be found from the right-hand rule.
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EXAMPLE 9

A proton whose energy is 1 MeV moves in a circle
perpendicular to a magnetic field of 1.2 T.

(a) What is the time, T, for one complete revolu-
tion?

(b) What are the frequency, f , (in revolutions per
second) and the angular velocity, ω?

(c) How do the quantities T, f , ω, v, and r change
when the proton is accelerated to 2 MeV?

Ans.:
(a) The force on a charge in a magnetic field per-

pendicular to its motion is qvB. Here this is the
force that causes the charge to move in a circle,
the centripetal force, equal to mv2

r .

We can solve the relation qvB = mv2

r for the
velocity, v, to give v = qBr

m .
The velocity times the time for one revolution

is equal to the distance that the particle travels in
one revolution, i.e., vT = 2πr, so that T = 2πr

v .
If we now substitute the relation for v in

terms of the magnetic field, we see that T =
2πr m

qBr , which is equal to 2πm
qB . For a proton m =

1.67 × 10−27 kg and q = e = 1.6 × 10−19 C, so
that T = (2π)(1.67×10−27)

(1.6×10−19)(1.2)
= 5.5 × 10−8 s.

(b) The frequency is 1
T = qB

2πm = 1.83 × 107 revolu-
tions per second, or 1.83 × 107 Hz.

The number of radians per second is 2π times
the number of revolutions per second, so that
the angular velocity is (2π)(1.83 × 107) or
1.15 × 108 radians per second.

(c) We see that we did not use the fact that the
energy is 1 MeV. The time T and the frequency,
as well as ω, are independent of the energy! Of
course v depends on the particle’s energy ( 1

2 mv2)
and r is proportional to v.

What are the speed and the radius? Here v =√
2K
m =

√
(2)(1)(1.6×10−13)

1.67×10−27 = 1.38 × 107 m/s.

r = mv
qB = (1.67×10−27)(1.38×107)

(1.6×10−19)(1.2)
= 3.3×10−2 m

or 3.3 cm.

The proton moves with the same angular veloc-
ity in the magnetic field, regardless of its energy. If it
could be accelerated each time it crosses a diameter,
first to the right and then to the left, with a frequency
equal to the frequency of its motion, it could gain
energy each time it goes through 180◦. This is what
happens in a cyclotron. The frequency qB

2πm is called
the cyclotron frequency.
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The way this is done is that the particles are
made to move in the magnetic field in two semicir-
cular metal enclosures (called “dees”, because they
have the shape of the letter D). If an alternating volt-
age is now applied between the dees, at the cyclotron
frequency, the particles will get a kick, i.e., a force and
an acceleration along their motion, each time they go
through 180◦. After each kick from one dee to the
other the velocity and hence the radius will increase,
so that the particles will spiral outward until they
reach the boundary of the magnetic field.

The figure shows the dees and a particle path
with an exaggerated acceleration. Inside the dees the
path is circular. The voltage between the dees accel-
erates the particles, so that they move with increased
velocity, energy, and radius after they move from one
dee to the other. By the time they have moved through
a half circle and are about to return to the first dee,
the voltage has reversed, and they are again acceler-
ated. (Can you tell what the direction of the magnetic
field is?)

Solenoids

A current in a coil gives rise to a magnetic field
inside it that is stronger than that of a single
loop because the fields of the different loops are
roughly in the same direction and add up. A coil
used to produce a magnetic field is also called
a solenoid, meaning “pipeshaped.” You can see
that the field lines seem to flow through the coil
like a liquid through a pipe.

The figure shows the magnetic field of a
coil. We see that near the center, some distance
from the ends, the field is uniform. We can
use the first right-hand rule to relate the direc-
tion of the current to that of the magnetic field:
grasp the coil with the right hand, with the fin-
gers curling in the direction of the current. The
thumb points in the direction of the magnetic
field.

The figure also shows a magnet whose size
is the same as that of the coil. Its field distribu-
tion is the same! Both the coil and the magnet
have a north pole from which the magnetic
field lines emerge and a south pole where they
enter.

The earth’s magnetic field

The earth is a giant magnet. It acts as if it had a
magnet or a current-carrying coil inside it. In fact,
that’s just what seems to be the case. The inside
of the earth is so hot that part of it is molten, and
its rotation gives rise to the earth’s magnetic field.
Our knowledge of the origin of the earth’s field
is quite limited. Surprisingly perhaps, the earth’s
interior is much less accessible to us than the sur-
faces of the moon, the planets, and even the stars.
Most of our knowledge comes from mechanical
(sound-like “seismic”) waves, generated by nat-
ural phenomena, such as volcanic activity and
earthquakes.
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The magnetic field of a magnet points away
from its north pole, which is attracted to the
south pole of another magnet. That’s where we
run into an inconsistency: early on, the earth’s
pole to which the north pole of a compass needle
is attracted was called the north pole. We still
call it that, but if we think of the earth as a giant
coil or magnet, it is the other way around. What
we call the earth’s north pole is the south pole of
its internal magnet!

Charged particles are part of the “cos-
mic rays” coming toward the earth. They are
deflected by the magnetic field of the earth into
spiral paths surrounding the magnetic field lines
and form belts of radiation around the earth
named after their discoverer, the Van Allen belts.

Only when the charged particles come
toward the earth parallel to its magnetic field
are they undeflected. This happens when they
come toward the poles parallel to the earth’s axis.
Therefore more particles come through the atmo-
sphere there. They ionize the air molecules. When
the ions recombine with electrons, radiation is
emitted, some of it visible, called the aurora (the
aurora borealis or Northern Lights in the north
and the aurora australis or Southern Lights in the
south).

Ampere’s law

Gauss’s law is a general law about charges and
electric fields. Is there also a general law for
currents and magnetic fields? Yes, there is, but
it looks quite different. It is called Ampere’s
law, and we will show what it is in this sec-
tion. In the next chapter we will see that in this
form it is incomplete, and how Maxwell, by
extending it, was able to develop the concept of
electromagnetic waves.

Look again at the magnetic field surround-
ing a long straight wire and follow one of the
circular field lines with radius r. The magnitude
of the field is k′ I

r or μ0I
2πr . Now calculate B times

the length of the path (2πr) as we go around.
We get (B)(2πr) or (μ0I

2πr )(2πr), which is equal
to μ0I.

We can go around the wire along other
paths, again multiplying B for each piece of
path times the length Δs of the piece of path.
We can approximate the path by a series of
segments parallel and perpendicular to the mag-
netic field. There is no field radially out from

B
r

the wire, only the field tangential to the cir-
cular field lines, as before. The result of mul-
tiplying each piece of path, Δs, by the mag-
netic field component parallel to it is therefore
again μ0I.

We have taken the paths around a long
straight wire, but the result is the same for wires
with other shapes. The path times the magnetic
field component parallel to it, around a current
I, is always μ0I. This is Ampere’s law.

EXAMPLE 10

The field inside a long solenoid (or coil) is uniform,
i.e., it has the same magnitude and direction every-
where inside the solenoid. What is its magnitude?

Ans.:

L

path
I

Use Ampere’s law. Take a path of length L
inside the solenoid and return outside. Inside the path
length is L in the field B. For N turns within the
path, the enclosed current is NI. The outside part
of the path does not contribute, since the field is
zero there. The total contribution is therefore BL,
and it is equal to μ0NI. Hence BL = μ0NI and
B = μ0

N
L I.
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10.2 The electron: an old friend
turns out to be the
elemental magnet

Spin and magnetic moment

We are familiar with the fact that the electron’s
charge is the fundamental unit of charge. The
electron, with its spin, is also the fundamental
magnet. The quantity that describes its magnetic
properties is called its magnetic moment.

A
μ = IA+

I

Here is the definition of the magnetic
moment: take a circular loop of wire with area
A carrying a current I. The quantity IA is called
its magnetic moment. The symbol usually used
for it is μ (Greek mu). This is a different use of
the symbol μ from the one that we introduced
earlier in this chapter. The magnetic moment is
a vector quantity whose direction is defined to
be perpendicular to the loop. We still have to
decide between the two possible directions. Do it
as before, using the first right-hand rule: curl the
fingers of the right hand in the direction of the
current. The thumb then points in the direction
of the magnetic moment.

How is it that the electron has a magnetic
moment? Where is the loop, where is the current?

The electron’s magnetic moment is not asso-
ciated with a current through a loop, but with
another kind of motion, namely the electron’s
spin. Each electron has spin angular momentum.
It is always there, regardless of any other motion
of the electron. And the angular momentum and
the magnetic moment that is associated with it
always have the same size.

A tennis ball, even if it isn’t going any-
where, has angular momentum if it spins. That is
more or less the situation for an electron, except
that you can’t stop it from having this angular
momentum and you can’t change the amount.
Both the spin angular momentum and the spin

magnetic moment are fixed properties of each
electron.

The electron, however, is not a classical
entity that follows classical rules. It is not a lit-
tle ball spinning about its axis. One indication of
the nonclassical rules that it follows is that it has
this intrinsic angular momentum, that it always
has it, and always with the same magnitude.

Electron Spin and Its Orientation

The magnitude of the spin angular momentum of
the electron is

√
3

2 h̄, where h̄ (“h bar”) is Planck’s
constant, h, divided by 2π. (In a notation that is
used for other atomic angular momentum values
this can be written

√
s(s + 1)h̄, where s = 1

2 .) The
component of this angular momentum along the
direction of a magnetic field is 1

2 h̄.
A charge that has angular momentum also has

a magnetic moment. The spin magnetic moment
has a component along the direction of the mag-
netic field, either in the direction of the field (“up”)
or in the opposite direction (“down”). Its magni-
tude is eh̄

2m (where e is the electronic charge), and
this amount of magnetic moment is called a Bohr
magneton.

(a) Draw a diagram of the vector S representing
the spin angular momentum, and its compo-
nent Sz along the magnetic field. Do this for
both possible orientations. What is the angle
between S and Sz?

(b) Show that the units of the Bohr magneton are
those of a magnetic moment.

Ans.:
(a) Sz = 1

2 h̄, S =
√

1
2 ( 1

2 + 1)h̄ =
√

3
2 h̄, and cos θ =

0.5
0.866 , θ = 54.7◦.

B
S
z S

S
z S

(b) The units of h and h̄ are Js. The units of eh̄
2m are

therefore C
kg Js.

J = Nm and N = kg m
s2 . We can substitute

N = kg m
s2 to get Js = Nms = kg m

s2 m and C
kg Js

= C
s m2 , which are the units of IA and therefore

the units of a magnetic moment.
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The electron is a tiny magnet. It has a mag-
netic moment, and this is what characterizes a
magnet. Its spin magnetic moment is responsible
for almost all of the strong magnetic properties
of matter such as the ferromagnetism of iron.

An electron can have additional angular
momentum if it is in an atom in orbit about
a nucleus. Together with this orbital angular
momentum there is an orbital magnetic moment.
The effects of the orbital magnetic moments of
atoms are generally smaller than those associated
with the spin magnetic moments, and are usually
overshadowed by them.

All matter contains electrons, and we can
ask why the magnetic properties are only occa-
sionally large. The answer is that it’s just as for
the charge properties: sometimes two magnetic
moments cancel because they are in opposite
directions. In other cases magnetic moments may
be randomly oriented so that their vector sum is
zero. The real surprise is that for some materials
the cancellation is not complete. The best-known
case is that of iron. An iron atom has a net
magnetic moment because the magnetic moment
vectors of the electrons in the atom do not
cancel.

In a magnetic field atoms with spin mag-
netic moments tend to line up with their magnetic
moments parallel to the field. In some materials
the magnetic moments remain aligned even when
the external magnetic field is taken away. A piece
of material in which this happens is a permanent
magnet.

The Gyromagnetic Ratio

An object with mass m and charge q is in a circular
orbit with radius r at a speed v.

(a) What is its angular momentum, L, in terms of
these quantities?

(b) What is its magnetic moment?

(c) What is the magnetic moment divided by the
angular momentum? This ratio is called the
gyromagnetic ratio. Express this quantity in
terms of q and m only. (Remember that the
current is the charge passing by per second,
i.e., the amount of charge passing in a given
time divided by that time.)

Ans.:
(a) L = mvr.

(b) μ = iA, where A = πr2. If the time for one rev-
olution is T, the current is i = q

T . T is given by
2πr = vT, so that i = q

T = q
2πr/v = qv

2πr . μ is then
( qv

2πr )(πr2) = qvr
2 .

(c) μ
L = qvr

2mvr = q
2m .

We see that the ratio between the magnetic
moment, μ, and the angular momentum, L, of a
charge moving in an orbit depends only on the
mass and the charge of the orbiting object. In other
words, it is independent of the size of the orbit
and the speed of the moving charge.This makes it
a fundamental and interesting quantity. q

2m is the
classical value of the gyromagnetic ratio.

r

q

 L       2m
mvr

=

One of the indications that the electron is
not a classical object is that it has a spin angular
momentum, and that its value is always the same.
Another is that the spin’s gyromagnetic ratio, the
ratio between the spin magnetic moment and the
spin angular momentum, does not have the clas-
sical value e

2m , but that it is instead twice as large,
equal to e

m .

Magnetic materials

When a material is put in a magnetic field, the
atoms and molecules of which it is composed
experience forces and torques as a result of
their magnetic moments. The magnetic moments
may be intrinsic, i.e., those that the atoms and
molecules have even if there is no magnetic
field. In addition, there are always also the mag-
netic moments that are there because there is a
magnetic field and that are absent without it.

The two behave quite differently. An intrin-
sic magnetic moment (one that is always there,
like the spin magnetic moment) experiences a
torque that tends to line it up with the field and
will strengthen it. This effect is called paramag-
netism, and a material in which it predominates
is paramagnetic.
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A magnetic moment that is created by a field
points in the direction opposite to the field and
weakens it. (This is shown by Faraday’s law,
which is described in the next section.)

If the intrinsic magnetic moments are those
of the separate individual atoms, the effects are
usually quite small. They can, however, be very
large if the atomic magnetic moments interact
with each other so strongly that they line up
parallel to one another even when there is no
external magnetic field. This is what happens in
iron and other ferromagnetic materials.

The total magnetic moment of a piece of iron
is, however, usually small or zero. The material
breaks up into domains, regions in which the
atomic magnetic moments are parallel to each
other, but in each domain with a different orien-
tation, so that the net magnetic moment is zero or
small. In an external field the magnetic moments
of the different domains tend to line up and can
enhance the magnetic field by a factor of several
thousand.

10.3 Generating electricity:
motional emf and
Faraday’s law

The motional emf

We already know that there is a magnetic force
on a charge moving in a magnetic field. Can we
use this fact to push the electrons in a wire or
rod to one side, just as electrons in a battery
accumulate at one end?

Look at a metallic rod or wire moving side-
ways in a magnetic field. Each of the charges in
the rod experiences a force, the positive charges
toward one end and the negative charges toward
the other. The charges separate. The net effect

is that one end of the rod becomes positively
charged and the other negatively. While it is
moving in the magnetic field the rod is polarized.

+ B

v

F

+

−

There is now a difference in electric poten-
tial, ΔV , between the two ends of the rod. The
moving rod acts like a battery. A battery also
has two ends, or terminals, with a difference of
electric potential between them. The potential
difference between the ends of the rod is there
as long as the rod continues its motion in the
magnetic field.

The difference in electric potential that is
created is analogous to the difference in gravita-
tional potential that is produced when an object
is lifted. The gravitational potential energy of a
lifted object can be changed to kinetic energy
when the object returns to its lower position.
Here too, the potential energy (this time the elec-
tric potential energy) can change to another form
when the charges return to where they have lower
potential energy.

With a battery this happens when we con-
nect a wire from one terminal to the other.
There is then a current from the positive termi-
nal through the wire to the negative terminal.
(Since it is the negatively charged electrons that
move, their motion is in the opposite direction,
from the negative terminal, through the wire out-
side the battery, to the positive terminal.) As
a result of the collisions of the electrons with
the ions of the wire the internal energy of the
wire increases and the wire heats up. The elec-
tric potential energy is transformed to internal
(“thermal”) energy.

If we do the same with the rod moving in a
magnetic field, we have to be careful that the wire
through which the charges return is stationary,
i.e., not also moving with respect to the magnetic
field.
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In both the battery and the moving rod there
is a transformation of energy to electric poten-
tial energy from some other form of energy. In
the battery it is the stored internal (“chemical”)
energy that is liberated by the chemical reactions
within it. In the moving rod it is its kinetic energy
that is transformed.

The amount of energy that is transformed,
divided by the charge that moves, is the emf.
It represents the energy, for each coulomb that
is moved, which is changed to electric potential
energy from some other kind of energy.

The figure shows a rod, free to slide from
left to right along stationary rails while it contin-
ues to make electrical contact with them. There
is a magnetic field, B, into the plane of the
paper. The rod and the charges within it are being
pushed to the right by an external force that is not
shown, and they move to the right with veloc-
ity v. Because the charges in the rod are moving
in a direction perpendicular to the field, there
is a force on them, perpendicular both to their
velocity and to the field.

The force on an amount of charge, Q, mov-
ing with a velocity, v, at right angles to the field
B, is QvB. The positive charges experience a
force in one direction and the negative charges
a force in the opposite direction. The electrons
move toward the end marked with a minus sign.
The effect is the same as if an equivalent amount
of positive charge were to move along the rod in
the other direction toward the end marked with
a plus sign. If an amount of charge, Q, is moved
a distance L by a force, F, the work on it (force
times distance) is FL = QvBL. The work per unit
charge is FL

Q , which is equal to BLv. This is the
potential difference, or emf, that is created. For
this case it is called the motional induced emf, E ,
equal to BLv.

The charges stay separated, and the induced
emf continues to exist, as long as the rod or wire
continues to move in the field. The figure shows
the return circuit. The rod moves along a loop,
the rest of which is stationary.

The emf in terms of the change
in the flux: Faraday’s law

We can now put the relation for the emf in
another form which turns out to be much more
generally valid. As the wire moves, the area of the
loop changes by an amount ΔA, equal to LΔx in
a time Δt, the change in t.

The rate at which the area changes, ΔA
Δt , is

equal to LΔx
Δt , or Lv, where v is the rod’s velocity.

Instead of BLv for the motional emf, we can write
BΔA

Δt .
We called the product of the electric field,

E, and the area perpendicular to it, the electric
flux. Similarly, we call the product of the mag-
netic field, B, and the area perpendicular to it,
the magnetic flux, for which we use the sym-
bol Φ (Greek capital phi). The magnitude of the
motional induced emf can then be written as ΔΦ

Δt .
In our example the velocity, v = Δx

Δt , the
rate of change of the area, ΔA

Δt , and the rate of
change of the magnetic flux, ΔΦ

Δt , are all con-
stant. To encompass the case where this is not
so, we use the notation dΦ

dt , representing the rate
of change with time of the magnetic flux through
the loop, regardless of the particular nature of
the variation.

We have not yet considered the direction of
the induced emf. Look again at the figure that
shows the motional emf. The rod moves to the
right (in the x direction) in the external mag-
netic field, which points into the paper. The area
of the current-carrying loop increases by ΔA as
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the rod moves. The force on positive charges is
along the rod, in the y direction, and there is a
current, the induced current, counterclockwise
around the loop. It gives rise to an induced mag-
netic field, which here is up, out of the paper,
in the z direction. (Use the first right-hand rule.)
We see that it opposes the increase of the original
downward magnetic flux.

What happens if the rod moves to the left?
Now ΔA and the flux through the loop decrease.
The force on positive charges in the rod is in the
negative y direction and the other end of the rod
becomes positive. The induced current is clock-
wise. Its magnetic field (the induced magnetic
field) is downward, into the paper. It opposes the
decrease of the original downward flux. It tries
to keep the flux there.

In both cases there is a change in the original
magnetic flux in the loop. In both cases there is an
induced magnetic field that opposes the change
in the original flux. In the first case it is in the
direction opposite to that of the original field.
In the second case it is in the same direction. In
both cases it opposes the change of the original
flux. The direction can be incorporated in the
statement for the induced emf by using a minus
sign: E = − dΦ

dt .
The statement that the induced field opposes

the change in the original field is so impor-
tant that it is given its own name. It is called
Lenz’s law.

The rod moves in the field so as to pro-
duce a magnetic force. Now look at the same
event from the reference frame in which the rod
is at rest. This time the charges are not moving,
so that there is no magnetic force. Nevertheless,
experiments show that the emf is still there!

In fact, we would be very surprised if this
were not so. We do not expect the laws of physics
to depend on the particular reference frame, or

coordinate system, from which a phenomenon is
observed. More formally, we call this the prin-
ciple of relativity, a cornerstone of the special
theory of relativity.

The relation E = − dΦ
dt is called Faraday’s

law. It is valid regardless of how the flux changes,
regardless, that is, of whether the rod or the loop
of wire actually move in a particular coordinate
system. It goes farther than the relation for the
motional emf, and cannot be derived from the
force law.

Faraday’s law describes how the motion of
wires in a magnetic field can be used to “generate
electricity.” It shows how the kinetic energy of
the wires can be transformed to electric potential
energy in an electric generator. This is how the
overwhelming majority of the electric energy that
we use is produced.

EXAMPLE 11

Go to the PhET website (http://phet.colorado.edu)
and open the simulation Faraday’s Electromagnetic
Lab.

(a) Choose “bar magnet.” Check “show field” and
“show compass.”

The field is shown by little compass needles.
The red end points in the direction of the field.
Move the magnet and the compass. See how the
compass needle’s orientation compares with that
of the field vectors. “Flip polarity” and observe
the effect.

(b) Choose “pickup coil.” Check “show electrons.”
Move the magnet in and out of the coil and
watch the response of the light bulb and of the
electrons. Move the magnet slowly to see the
direction of motion of the electrons. Increase
the area of the loop and observe the effect. A
voltmeter can replace the light bulb by clicking
on the meter’s picture on the right.
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When the north pole is moved toward the
coil the magnetic flux through the coil increases.
What do you observe to be the direction of
motion of the electrons? (Clockwise or coun-
terclockwise as seen from the right?) Remember
that the motion of the electrons is opposite to
the direction of the induced current. What is the
direction of the magnetic field (the induced field)
produced by the induced current?

What does Lenz’s law predict for the induced
field? Do the prediction and the observation
agree?

As the middle of the magnet comes to the
coil, the flux through the coil decreases. What
does Lenz’s law predict for the direction of the
induced field now? What is the direction of the
current to produce this field? What is the motion
of the electrons? What is your observation for
the motion of the electrons? Does it agree with
the prediction of Lenz’s law?

Here is the answer to part (b). The answers to
the other parts follow similarly from Faraday’s
law and Lenz’s law.

As the magnet’s north pole enters the loop,
the electrons are seen to move CCW so that the
induced current is CW and the induced magnetic
field is to the left. It counteracts the change in the
flux, which here is the increase in the flux to the
right.

As the magnet’s middle enters the loop, the
field and flux decrease. This time the electrons
move CW so that the induced current is CCW
and the induced field is to the right. It again
counteracts the change, which this time means
that it counteracts the decrease in the flux. It is
to the right, in the same direction as the original
flux, so as to counteract its decrease.

(c) Choose “electromagnet.” Check “show elec-
trons” and “show compass.” Check to see that
the relation between the direction of the current
and that of the magnetic field is in accord with
what you expect.

Select “AC.” There are two sliders on the
“current supply” box that allow you to change
the amplitude and the frequency. Try them out.

(d) Choose “transformer.” Check “show field” and
“show electrons.” Select “DC.” Is there an
induced current? Explain.

Move the magnet coil (the primary) toward
the secondary (the pickup coil). Predict the direc-
tion of the field, the current, and the electron

motion induced in the secondary. Which of these
quantities can you observe? Are they in accord
with your prediction?

Click on “AC” and observe the effect. Look
at the light bulb and then switch to the voltmeter.
Use the five ways in which the simulation allows
you to change the voltage in the secondary.
What are they?

(e) Choose “generator.” Check “show compass.”
Move the compass near the magnet.
Turn on the “faucet” by turning the knob

(drag the small brown cylinder on the knob) to
a fairly low frequency (near 30 rpm). Watch
the compass, the light bulb, and the electrons.
Replace the light bulb by the voltmeter.

There are four ways to change the current in
the pickup coil in this simulation. What are they?
Try them. There is another that is not available
here. What is it?

EXAMPLE 12

A circular loop of wire with an area of 10−3 m is
perpendicular to a uniform magnetic field of .1 T.

B

(a) The magnetic field is switched off and smoothly
goes to zero in 0.2 s. What is the induced emf in
the loop during this time?

(b) The loop is turned through 90◦ in 0.2 s. What is
the induced emf during this time?

(c) The loop is flipped through 180◦ in 0.2 s, so that
it is again perpendicular to the field, but now fac-
ing in the opposite direction. What is the induced
emf this time?

Ans.:
(a) ΔΦ = (0.1)(10−3) = 10−4 Tm2. Δt = 0.2. ΔΦ

Δt =
10−4

0.2 = 5 × 10−4 V. The direction of the induced
emf is such as to produce an induced current
with an induced magnetic field that opposes the
change in the original field. Here it opposes
the decrease of the original field and is there-
fore in the same direction as the original field.
The direction of the induced current is related
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to the direction of the induced magnetic field by
the first right-hand rule. This is also the direction
of the induced emf.

(b) After the loop is turned, the flux through it is
zero. Hence the change of flux is the same as in
part (a), and so is the induced emf.

(c) This time the flux, as seen from the loop,
changes direction. Sitting on the loop you see the
flux changing from 10−4 Tm2 up to 10−4 Tm2

down, i.e., a change that is twice as much as
before, equal to ΔΦ = 2 × 10−4 Tm2. The aver-
age induced emf is therefore twice as large as
before, or 10−3 V.

EXAMPLE 13

emf induced in a turning loop; electric generator

B

A square loop of wire with sides of 20 cm is sus-
pended so that it can turn about an axis along its
centerline. It rotates at a rate of 5 revolutions per
second in a uniform magnetic field of 1.2 T.

(a) What is the maximum value of the flux through
the loop?

(b) What is the flux as a function of time?

(c) What is the emf induced in the loop?

Ans.:
(a) The flux has its maximum value when the loop

is perpendicular to the field. It is then Φmax =
BA = (1.2)(0.22) = 0.048 Tm2.

(b) Each revolution of the loop turns it through 2π

radians. Five revolutions are 10π radians, so
that the angular velocity, ω, is 10π radians per
second.

The flux varies between Φmax and zero. It is
at its maximum when the loop is perpendicular
to the magnetic field and is zero when it is par-
allel to the field. Two of the sides of the loop
remain perpendicular to the field. The others

rotate at an angle θ to the field. The flux through
the loop is equal to Φ = Φmax sin θ. The angle
θ is equal to ωt, so that Φ = Φmax sin ωt.

Φ

t

T = 0.2 s
ωT = 2π

Here we have assumed that Φ = 0 at t = 0,
i.e., that at t = 0 there is no flux through it
at that moment. We could also have used Φ =
Φmax cos ωt, which would have the same time
variation, but with Φmax at t = 0.

(c) The magnitude of the emf is given by E = dΦ
dt . To

calculate the emf we have to know the derivative
of sin ωt.

Look first at the derivative of y = sin x. It is
dy
dx = cos x.

sin x

–1

–1
1

1

cos x

x

xπ 3ππ 2π0 2 2

You can see from the diagram that sin x has a
slope of 1 at x = 0, a slope of zero at x = π

2 and 3π
2 ,

and a slope of −1 at x = π. These values provide a
check on the quoted relation that dy

dx = cos x.

The derivative of y = sin ωt is dy
dt = ω cos ωt.

The factor ω shows that as expected, when the rate
of rotation is larger, the rate of change of y is higher.

Finally, we can write the induced emf as dΦ
dt =

ωΦmax cos ωt, equal to (10π)(0.048) cos 10πt, or
1.51 cos 34.1t V.
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1.51 V

–1.51 V

T = 0.2 s

t
E

E
max  

=

The induced emf varies between 1.51 V and
−1.51 V at a rate given by the angular velocity of
10π or 34.1 radians/s, i.e., at a frequency (= ω

2π
) of

5 s−1 or 5 Hz.
We have gone into some detail in this example

because of its great importance. An electric generator
consists of a coil of wire with many loops, rotat-
ing in a magnetic field. This is how almost all of the
electricity that we use is generated.

We also see that the induced emf of a rotating
coil varies sinusoidally. This is one of the reasons
why alternating voltage and alternating current (AC)
are universally used for household and industrial
distribution.

A direct current (DC) generator, i.e., one where
the current is always in the same direction, can also
be constructed from loops rotating in a magnetic
field. However, the direction of the current has to
be reversed each time the loop rotates through 180◦.
This can be accomplished by a commutator, like the
one that we discussed in connection with the motor,
when it was also necessary to reverse the direction of
the current after each half turn.

10.4 Summary

The magnetic force is an interaction between
electric charges over and above the electric force
between them. It is there when the charges are
moving with respect to each other. It can be
described either as an interaction between mov-
ing charges or as an interaction between currents.

We describe the interaction in two steps: the
current (or the moving charge) creates a magnetic
field, and another current (or moving charge) in
the field experiences a magnetic force.

The magnitude of the magnetic force
between two long parallel currents is Fm

L =

k′ I1I2
r . They attract if they are in the same direc-

tion and repel if they are in opposite directions.

The magnitude of the magnetic field of a long
current, I1, is B = k′ I1

r .

The direction of the magnetic field of a
current-carrying wire is given by the first right-
hand rule: grasp the wire with your right hand.
The fingers curl in the direction of the magnetic
field lines.

The magnitude of the force on a current I2 in
a magnetic field is F = BI2L, if B is perpendicular
to I2 and L. If it is not, the relation is still true if
for B we use only the component of the magnetic
field that is perpendicular to I2 and L.

The direction of the magnetic force on a
current is given by the second right-hand rule:
point the fingers of the right hand in the direc-
tion of the current, I. Bend the fingers so that
they point in the direction of the magnetic field.
The thumb then points in the direction of the
force.

The shorthand notation that incorporates
both the magnitude and the direction of the mag-
netic force on a current is F = IL × B. In this
relation (the cross product) the magnitude of F
is ILB sin θ.

The magnetic torque on a loop with current
I and area A is τ = IA × B. (Since the mag-
netic moment of the loop is μ = IA, we can
also write τ = μ×B.) This is the principle of the
electric motor.

The magnetic force on a moving charge is
F = Qv × B. If the velocity and the field are
perpendicular to each other, F = QvB, and the
charge moves in a circle in the plane perpendic-
ular to B, with mv2

r = QvB, where mv2

r is the
centripetal force, which here is provided by the
magnetic force, QvB.

To determine the direction of the magnetic
field of a solenoid coil the fingers in the direction
of the current; the thumb points in the direction
of B. (First right-hand rule.)

Ampere’s law: follow a path around a cur-
rent. For each step multiply the component of B
parallel to the path by the length of the path. The
total is μ0I. For a circular path (B)(2πr) = μ0I.



218 / Magnetism: Electricity’s Traveling Companion

The elementary magnetic object is a cur-
rent loop, or magnet. The electron is a tiny
magnet, although there is no loop in that
case. The electron (as well as other particles)
has angular momentum even when it is not
going anywhere. It is called its intrinsic angular
momentum or spin. The magnetism of the elec-
trons leads to the various magnetic properties of
materials.

The magnetic moment of a current loop is
μ = IA.

The gyromagnetic ratio is the ratio of the
magnetic moment to the angular momentum.

A paramagnetic material contains perma-
nent magnetic moments that tend to line up
parallel to a magnetic field.

In a diamagnetic material magnetic moments
are induced by a magnetic field in accord with
Faraday’s law. Their direction is opposite to that
of the magnetic field.

A ferromagnetic material consists of domains
in each of which the magnetic moments are lined
up in the same direction. In a magnetic field
the domains line up to produce strong magnetic
moments.

The vast majority of the electric energy that
we use is generated by the motion of wires in
magnetic fields. A motional emf arises (an electric
potential difference appears) between the ends
of a wire moving in a magnetic field. A more
inclusive and general description is provided by
Faraday’s law.

Motional emf: when a wire of length L
moves in a magnetic field, B, with speed v, and
L, B, and v are perpendicular to each other, the
induced motional emf is E = BLv.

Faraday’s law: there is an induced emf in a
loop when the magnetic flux through the loop
changes. Its magnitude is dΦ

dt .

In a loop the induced emf produces an
induced current, which produces an induced
magnetic field. The direction of the induced mag-
netic field is such that it opposes the change in the
flux, ΔΦ, that brought it about.

In a coil rotating about its diameter in a
magnetic field, the emf varies sinusoidally. This

is what happens in an alternating current (AC)
generator.

10.5 Review activities
and problems

Guided review

1. Two transmission wires are horizontal and
parallel to each other, one above the other. The
upper one carries a current of 100 A to the right
and the lower one carries a current of 60 A in the
same direction. How far apart do they need to be
if the force on each is to be no more than 10−3 N
on each meter?

2. A long wire carries a current of 10 A. Where
and in what direction does a second, equal and
parallel current have to be so that the magnetic
field 10 cm from the first wire is zero?

3.

I

F

A wire whose length is 50 cm, carrying a
current of 8 A in the x direction, experiences a
magnetic force of 0.1 N in the y direction.

(a) What are the magnitude and direction of
the smallest uniform magnetic field at the wire?

(b) What other magnetic fields at the wire
can give rise to the same force?

4.

B

x

z

y
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A square loop (sides 20 cm, I = 12 A) lies
in the vertical (yz) plane. Looked at from
the right, the current is clockwise. There is a
uniform magnetic field of 0.5 T in the vertical (z)
direction.

(a) What are the forces on each side?
(b) What is the torque on the loop?

5. In what orientation of the loop of the previous
question would there be no torque?

6. (a) In what orientation would the loop of the
previous questions experience a torque half as
large as in question 4? Make a sketch that shows
the magnetic field and the loop with its currents
and the normal to the loop.

(b) Show the vectors representing the area A
(in the direction of the normal) and the direction
of the vector τ, the torque. Is the direction of the
torque as found from the forces the same as that
found from the relation τ = IA × B in this and in
the previous two questions?

7. (a) From the forces on the current loop in
Example 7, determine the direction of the vector
representing the torque exerted by the magnetic
field.

(b) Determine the direction of the vector
IA × B and compare it to the result of part (a).
(The vector A is related to the current in the loop
by a rule like the first right-hand rule: the fingers
of the right hand point along the current and the
thumb gives the direction of the area vector.)

8. Looking down, an electron is observed to
move clockwise in a horizontal circle. What is the
direction of the magnetic field in which it moves?

9. A charged particle moves in a circle in a
magnetic field.

(a) Starting with the force relation show that
r is proportional to v, and that

(b) the number of revolutions per second is
the same for all values of the speed, v.

(c) A cyclotron has a magnetic field of 1 T
and a radius of 20 cm. To what energy can it
accelerate protons?

10. A coil whose diameter is 5 cm and whose
length is 1.2 m is wound with 15,000 turns of
wire. What is the magnetic field inside the coil
when it carries a current of 20 A?

11. A “flip coil” is used to measure a magnetic
field. It is a square loop of wire whose sides are

2 cm. It starts out with its axis (the normal) par-
allel to the field, and is then flipped through 180◦
in a time of 0.1 s. The induced emf is observed to
be 10−3 V. What is the magnitude of the field?

12. In Example 12 the loop is initially perpen-
dicular to the magnetic field, i.e., the normal to
the loop is parallel to the field. Now consider the
case where the loop is initially parallel to the field
(with its normal perpendicular to the field).

(a) The loop turns through 90◦ in 0.2 s to the
position in the figure of the example. What is the
average emf during that time?

(b) The loop turns through an additional
90◦, again in 0.2 s. What is the emf this time?

(c) What is the average emf when the two
motions of parts (a) and (b) are combined, i.e.,
when the loop turns through 180◦ in 0.4 s?

13. A loop of wire whose area is 0.2 m2 rotates
in a uniform magnetic field of 0.9 T at a rate
of 12 revolutions per second. It starts (at t = 0)
with its normal perpendicular to the field.

(a) What is the flux through the loop at t = 0
and after the loop has rotated through 90◦, 180◦,
and 270◦?

(b) Sketch the graphs of Φ and E as a func-
tion of time. On your graphs mark Φmax, Emax,
and the time T for one revolution.

Problems and reasoning
skill building

1. (a) A positively–charged particle travels hori-
zontally with a velocity v. It enters a region with
a uniform magnetic field such that it travels in a
horizontal circle. Make a sketch of v, B, and the
path with one of the possibilities for the direction
of B.

(b) What is the other possibility for the
direction of B?

(c) What paths would a negative particle
follow in the same fields as in parts (a) and (b)?

2. Two particles with the same mass, traveling
with the same velocity, enter a region with a
uniform magnetic field, such that they move in
circular paths. The first particle has charge q1

and for the second q2 = 2q1. What is the ratio
r2
r1

of the radii of the two paths?

3. A charged particle moves in a circle in a uni-
form magnetic field. An electric field is now
turned on, in a direction opposite to that of the
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magnetic field. What is the path of the particle
now?

4. A loop of wire is in the plane of the paper. It
carries a clockwise current.

(a) What is the direction of the magnetic field
at its center?

(b) The area of the loop is 10 cm2 and the
current is 2 A. What are the magnitude and
direction of the loop’s magnetic moment?

(c) An additional magnetic field, horizontal
and to the right, of 0.5 T is turned on. What
are the magnitude and direction of the torque on
the loop? Through what angle will it turn until
the torque is zero? What is the direction of its
magnetic moment then?

5. Each of the three long parallel wires (i), (ii),
and (iii) carries a current of 5 A.

8 cm

8 cm

(i)

(ii)

(iii)

(a) What is the force on the middle one?
(b) What are the magnitude and direction of

the forces per meter on each of the other two?

6. A magnetic field is perpendicular to a loop of
wire. Looking down on the loop, what is the
direction of the induced current (clockwise or
counterclockwise) when the field is

(a) up and steady
(b) up and increasing
(c) up and decreasing
(d) down and increasing
(e) down and decreasing

7. A solenoid is surrounded by a loop of wire.
A current is switched on in the solenoid in the
clockwise direction when seen from the right.

(a) What is the direction of the induced cur-
rent? What can you say about the length of time
during which there is a current in the loop?

(b) What is the direction of the induced cur-
rent when the current in the solenoid is switched
off?

8. A long straight wire carries a current of I1 =
12 A into the plane of the paper. A second wire
is 10 m from the first and parallel to it.

(a) The magnetic field is zero at a point
between them in the plane containing both wires,
2 m from the first. What are the magnitude and
direction of the current I2 in the second wire?

(b) Part (a) can be answered by first find-
ing the field of the first current. What is the
advantage of not doing that and first developing
a relation between I1 and I2?

9. A house has a floor area of 120 m3 and four
walls, each of which has an area of 25 m3. One
wall faces north, one south, one east, and one
west.

The earth’s magnetic field there has a hori-
zontal component of 2.4 × 10−5 T and a vertical
component, down, of 4.8 × 10−5 T.

What is the magnetic flux outward through
each wall and through the floor? What is the total
flux outward through all the walls, the floor, and
the ceiling?

10. A circular coil of wire has a radius of
0.15 m and a resistance per unit length of 3.8 ×
10−2 Ω/m. It is perpendicular to a magnetic field
that increases from zero to 0.55 T in 1.5 s. What
is the electric energy dissipated in the wire during
the 1.5 s?

11. Looking down on its path, a 1 MeV proton
travels clockwise with a radius of 10 cm. What
are the magnitude and direction of the field in
which the proton moves?

12. A loop of wire whose area is 10−2 m2 rotates
about its diameter in a uniform magnetic field of
0.8 T at a rate of 15 revolutions per second. It
starts out (at θ = 0) with its normal parallel to
the field.

(a) What is the average emf induced in the
loop as it turns through 90◦ from its starting
position?

(b) Repeat part (a) for 180◦ and 360◦.

Multiple choice questions

1.

5 A

10 A
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Two long parallel wires carry steady cur-
rents in opposite directions. The current in the
upper one is 5 A to the right and the current in
the lower one is 10 A to the left. The ratio of the
magnetic force on I1 to that on I2 is

(a) +1
(b) −1
(c) +2
(d) −2

2. For the same wires and currents as in the pre-
vious question, the ratio of the magnetic field at
I1 created by I2 to that at I2 created by I1 is

(a) +1
(b) −1
(c) +2
(d) −2

3. Both uniform magnetic and electric fields can
do all but which one of the following on a
charged particle?

(a) accelerate it
(b) exert a force on it
(c) change its direction
(d) increase its kinetic energy

4. A proton and an alpha particle (q = 2e, m =
4mp) move with the same speed in circles in a
uniform magnetic field. The ratio of their radii
rα
rp

is
(a) 4
(b) 2
(c) 1
(d) 0.5

5. A proton and an alpha particle move with
the same kinetic energy in circles in a uniform
magnetic field. The ratio of their radii rα

rp
is

(a) 4
(b) 2
(c) 1
(d) 0.5

Synthesis problems and projects

1.

v E

An alpha particle travels in the x direction
with a velocity of 103 m/s. It enters a region with
an electric field in the y direction, of 50 N/C.

(a) What are the magnitude and direction of
a magnetic field such that the particle continues
undeflected?

(b) Replace the alpha particle by an electron,
and repeat.

2. An electric generator has 500 turns of wire,
each with an area of 0.05 m2. It rotates with
a frequency of 60 revolutions per second in a
magnetic field of 1.2 T. What is the maximum
emf that it produces?

3. In a mass spectrometer a particle with mass m
and charge q is first accelerated through a poten-
tial difference V . It then enters a region where a
uniform magnetic field (B) causes it to move in a
circle, with radius r.

(a) Develop a relation for r in terms of
q, m, V , and B.

(b) What is the radius for a proton that is
first accelerated through a potential difference of
300 V and then moves in a circle in a magnetic
field of 0.05 T?

(c) Use proportional reasoning to find the
radius for an alpha particle.

(d) Again using proportional reasoning, by
what factor will the radius be different for an
electron compared to that for a proton?

4.

I

B

x

y

z

A flat horizontal strip carries a current in
the x direction. There is a uniform magnetic
field in the y direction (up, perpendicular to the
strip).

(a) The electrons, moving in the negative x
direction, are deflected. What is the direction of
the magnetic force on them?

(b) The electrons move toward one side of
the strip, which becomes negatively charged,
while the opposite side becomes positively
charged. This is called the Hall effect, and the
potential difference at right angles to the current
is called the Hall voltage.
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In addition to the magnetic force at right
angles to the current there is now also an electric
force. What is its direction?

The build-up of charge continues until
the electric force and the magnetic force are
equal, so that there is then no further deflec-
tion of the electrons as they move through the
strip.

(c) Consider the possibility that the current is
carried not by electrons but by positive charges.
What is the direction of the magnetic force on
them?

(In semiconductors the current can be car-
ried by “holes” in the ocean of electrons. The
holes act as if they were positive charges. The
Hall effect can distinguish between currents car-
ried by holes and by electrons.)

(d) Show how the measurement of the Hall
voltage can be used to determine the average
velocity of the electrons. (The electrons have
large velocities. When there is no current they
move randomly in all directions, colliding with
the ions of the crystalline lattice. Their average
velocity is then zero. When there is a current there
is a much smaller additional component of their
velocity in the direction opposite to the current.
Its average is called the drift velocity.)

5. A transformer consists of a primary coil sur-
rounded by a secondary coil. An alternating
current in the primary coil induces an alternating
current in the secondary coil.

(a) For one quarter cycle the primary current
is in the clockwise direction and increases. What
is the direction (clockwise or counterclockwise)
of the secondary current during that time?

(b) For the next quarter cycle the primary
current is in the same clockwise direction and
decreases. What is the direction of the secondary
current in this part of the cycle?

(c) Describe the direction of the primary and
secondary currents and how they change for the
following two quarter cycles.

(d) Sketch the primary current as a function
of time and underneath it the secondary current.
(Use clockwise as positive and counterclockwise
as negative.) Write down Faraday’s law. Are your
graphs consistent with the minus sign in it?

6. In a loudspeaker a coil is attached to a card-
board cone, which can move in the field of a
permanent magnet. Describe its production of
sound.

7. Describe the action of a magnetic (or
“dynamic”) microphone.


