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The magnifying glass
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Dynamics of the special theory: E = mc2

Magnetism and electricity: inseparable, but
interchangeable

When we think of transporting mechanical energy, we might first think of a ball
or bullet. The kinetic energy that we give one of these projectiles at one end of
its path is available at the other end. There is another way. Think of a group of
people standing close to each other. Someone pushes the first one, let’s call him
Robert.That makes him lean over and push the person next to him, who, in turn,
pushes the next one, and so on.The last one, call him Richard, falls over when his
neighbor pushes him. Robert never touches Richard, but the initial push starts
the sequence of forces from one to the next, through the line of people, from
Robert to Richard.

We have described a single disturbance, or pulse. If it is a continuing dis-
turbance, back and forth, or up and down that is transmitted, we call it a
wave.

We first explore mechanical waves, characterized by forces and displace-
ments.We then come to electromagnetic waves, where no material object moves
and only the electric and magnetic fields change as they chase each other through
empty space.

11.1 What is a wave?

Different kinds of waves

Think of a quiet lake. The water surface is
smooth and horizontal. The gravitational force
acts on each part of it. If some of the water is
higher than the rest, its weight pulls it to a lower
level. If some of it is lower, water from higher
levels will tend to flow there. Only when all of
the surface is at the same level is the water quiet.

Now look at a stone falling in the lake.
Where it hits the water, it pushes it down. The
stone sinks out of sight, but the water is no
longer in equilibrium. The depression is still
there. The gravitational force now acts to restore
the equilibrium configuration. Water fills the
depression. At the moment when the low part is
filled, the water level is still changing. The water

moves further and overshoots, and there is now
a raised portion of the surface. It experiences
a downward force, again back to the horizon-
tal equilibrium. Once more it overshoots. The
water surface at the point where the stone fell
oscillates up and down, and would continue to
do so if frictional forces did not cause the oscil-
lations gradually to diminish and eventually to
disappear.

As the water moves up and down in the
same place, there is another motion that devel-
ops. Each time the water moves down, it pushes
some of the rest of the water out of the way side-
ways, so that the neighboring region moves up.
The water there, in turn, pushes on the water
further away, so that the oscillation is propa-
gated outward, away from the original point (the
source) where the stone started it.
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When we look at the water we see an up-and-
down oscillation at the source and also at every
other point that has been affected. At each point
there is a motion of the water, up and down, as
a function of time.

The second variation that we see is as a
function of distance, away from the source in
every direction along the surface. We can take a
snapshot and see the oscillation at a particular
moment in time.

If you think about what you actually look at
when you see a wave, it is likely to be something
different still. Your eye follows a point on the
wave, a high point or a low point (a crest or a
trough) as it moves away from the source along
the direction of propagation of the wave.

Each of these variations is characteristic
also for other waves. There are waves along
a guitar string, sound waves in air, and elastic
waves through a solid or liquid material. All of
these are mechanical waves. In each case an equi-
librium situation is disturbed. A restoring force
acts to reestablish the original equilibrium, but
the motion continues: there is an overshoot. The
restoring force continues to act, changing direc-
tion so that it is always toward the equilibrium
configuration.

EXAMPLE 1

Go to the PhET website (http://phet.colorado.edu)
and open the simulation Wave on a String. Set
“damping” to zero. (This eliminates friction and
other dissipative forces.) Select “oscillate” and “no
end.” This will allow the string on the screen to move
up and down as if the string continued on to infin-
ity. Change the frequency and the amplitude. Push
“pause” and then “step.”

(a) Describe the motion of one of the green particles.
Use the “step” feature.

(b) What is the relation between the direction of
motion of the particles and the direction of pro-
pagation of the wave?

Ans.:
(a) The particles oscillate along the vertical direc-

tion in simple harmonic motion.

(b) In this case the motion of the particles is in the
direction perpendicular to the direction of prop-
agation of the wave. This kind of wave is called
a transverse wave.

(In other kinds of waves, such as sound waves
in air, the particle motion is along the same
direction as the wave propagation. These waves
are called longitudinal waves.)

Some features are common to all waves,
but each kind has its special characteristics that
depend on the forces that act to restore the equi-
librium and on the medium (the water, the string,
the material) in which the waves propagate.

A sound wave in air, for example, is quite
different from a wave on the water surface, but
both share properties that are common to all
waves.

Let’s see how a sound wave in air gets
started. It can be by the back-and-forth motion of
your vocal cords or of the cone of a loudspeaker,
or by the vibration of a string, as in a guitar or
violin. In each case the air is pushed and dis-
turbed from its equilibrium. In turn, it pushes
on the neighboring region, which pushes further,
and so on along the propagating wave.

If the sound wave reaches an ear, it pushes
on the eardrum, and makes it move back and
forth. Knowledge of this vibration is transmitted
to the brain, and is perceived by it as sound.

Along the wave there is the motion of air
molecules, back and forth, at each point, super-
imposed on their random thermal motion. There
is a second quantity that varies in space. As
the air is pushed at the source, the air pressure
increases in the region around it. When the oscil-
lation continues at the source, and the vocal cord
or string draws back, the opposite occurs, and
the pressure decreases. Where the motion of the
molecules causes them to be closer together, the
air pressure increases; where they move farther
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apart, the pressure decreases. We can describe
the wave either as a variation in space and time
of the motion of the molecules or as a variation
of the air pressure.

EXAMPLE 2

Go to the PhET website and open the simula-
tion Wave Interference. Select “Sound” at the top,
“one speaker,” “no barrier,” speaker “on,” and
“grayscale.” Change the amplitude and the frequency
with the sliders, and observe the speaker and the
wave. You can use the “pause-step” function with the
buttons at the bottom of the screen. Click on “show
graph.”

What varies as the wave propagates? What do
the light and dark bands represent?

Click on “add detector.” Place the detector in
front of the speaker by clicking on it and moving it
with the mouse. The graph can be moved out of the
way of the waves. Now you can see what varies and
how it varies.

Click on “particles.” The markers allow you to
follow the motion of one particle at a time. How do
the particles move? What does the eye follow more
naturally?

Ans.:
The back-and-forth motion of the speaker pushes
the air particles. It causes regions of high pressure
and low pressure to move outward (to radiate) from
the speaker. The light regions are seen to represent
high pressure and the dark regions low pressure.

The pressure varies sinusoidally with time.
Each particle oscillates along the direction of

propagation of the wave. Where the particles bunch
together the pressure is high. The eye more naturally
follows the path taken by the points of maximum
pressure.

11.2 What can waves do?
Describing waves and
their properties

Interference

If I throw a baseball at you, there’s no doubt
that it carries energy. When it hits you, some of
its energy is transferred to you. If two baseballs
come at you, you feel the energies transferred
from each one. They add up.

The way waves add is very different. When
two waves arrive at a point their effects some-
times add, but they can also cancel.

We can see that with the water waves that
we looked at when we started. As the wave
passes, it alternately raises and lowers the water
level. Another similar wave, passing at the
same place, coming from another direction, will,
by itself, have the same effect. But what hap-
pens when both get to the same place at the same
time? One possibility is that each one, separately,
would cause the water level to rise. When both
arrive together, the effects add, and the water
level rises twice as high as it does with just one
of the waves.

But it is also possible that when both waves
get to the same place, one of them tends to make
the water level rise, but the other one acts to
lower it. The effects again combine, but if one
of the waves, by itself, would cause a crest, and
the other a trough, the two will cancel. The water
level neither rises nor falls.

This possibility of cancellation is peculiar
to waves. It is an essential feature that distin-
guishes waves from baseballs or other thrown
objects. The way that waves superimpose, some-
times resulting in reinforcement and sometimes
in cancellation, is called interference.

Pictorial and mathematical
description

Let’s describe a wave in detail with some mathe-
matics. We can think of a water wave as it travels
along a quiet lake, but it could also be some other
kind of wave, such as a sound wave in air or
through a solid material.

Here are two graphs of a wave.

y

y

x

t

T

They look similar, but each tells something
quite different. The first is a snapshot. It shows
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the height of the water as a function of the dis-
placement along a line in the lake. It could go
on, along the x-axis, repeating after a distance
λ (Greek lambda), called the wavelength.

The second graph shows what happens at
one point on this line as the water level rises and
falls when the wave passes. It shows the wave at
this point as a function of time. It repeats after a
time T, called the period.

In the time the wave travels the distance λ,
the point at x = 0 goes through one full cycle,
from y = 0, up, down, and back to zero. This
variation is shown by the second of the two
graphs. We see that the wave travels a distance λ

in the time T. The wave speed is therefore λ
T .

One more quantity characteristic of the
wave is the frequency. If it takes 1

4 s for the
wave to repeat (T = 1

4 s), then four full cycles of
the wave pass in every second. The frequency,
f , is then 4 s−1 or 4 hertz (4 Hz). In general,
f = 1

T . We see also that the wave speed is given
by v = f λ.

EXAMPLE 3

Go to the PhET webvsite and open the simulation
Wave on a String. Set “damping” to zero, “oscillate,”
and “no end.” Select “rulers” and “timer.”

Use the timer to measure how long it takes the
wave to travel one wavelength. This is done most
easily by going to “pause,” start timer, then “step”
until the wave has moved one wavelength.

How does this time (the period of the motion)
change as the frequency is changed? Note that the
number above “frequency” is proportional to the
frequency, but is not the actual frequency.

Ans.:
The period, T, is the time it takes for the wave
to travel one wavelength. It is the reciprocal of the
frequency, f . The speed is v = λ

T = f λ.

EXAMPLE 4

Go to the PhET website and open the simulation
Wave Interference. Select “Water,” “One Drip,”
“No Barrier.” Check “measuring tape” and “stop-
watch.” Set the f -slider near the middle. Pause
(bottom button) and measure the wavelength with
the measuring tape. Use the stopwatch to measure
the period. (Pause, start, reset, and step.)

Repeat for two smaller and two larger settings
of the frequency.

Make a graph of your data of λ vs. T. What
quantity on your graph represents the speed of the
water wave? What is your result for the speed?

What is the advantage of using the graph com-
pared to using the individual results?

Ans.:
Since λ = vT, we expect a straight line through the
origin, whose slope is the wave speed. The advantage
of the graph is that drawing the straight line averages
the results. Here the speed is about 2.3 cm /s.

We still haven’t written down a mathemati-
cal description of the two graphs, y as a function
of x and y as a function of t. We need a math-
ematical function that repeats. Here is one: the
sine function y = sin θ. We can show how this
function varies with the help of a circle whose
radius is one unit.

y
x

θ

θ =

θ =

θ = 0θ = π

π
2

3π
4

r = 1

The radial vector (r) starts horizontally, to
the right. Let the angle that it makes with the
horizontal be θ, measured in radians. As this
angle increases, we can look at the quantity
y = sin θ. It is the vertical component of the vec-
tor r. (sin θ = y

r , and since the magnitude r is 1,
sin θ = y.)

As θ goes from 0 to 90◦, i.e., from 0 to π
2

radians, the distance y ( = sin θ) goes from 0
to 1. In the next quadrant, as θ goes from 90◦ to
180◦, or π

2 to π radians, y goes from 1 to zero.
In the third quadrant, θ goes from π to 3π

2 and y
from 0 to −1, and finally, as θ goes from 3π

2 to
2π, y returns from −1 to zero. The full cycle is
2π radians, and as θ continues beyond this value,
the cycle repeats. We see that sin 0 = 0, sin π

2 =
1, sin π = 0, sin 3π

2 = −1, and sin 2π = 0, after
which the sine function repeats.

That’s not quite what we need. The function
sin θ repeats each time θ increases by 2π. We
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want a function that repeats when x is increased
by λ. This will happen if we use the function
y = sin 2π

λ
x. When x in this function reaches λ,

y = sin 2π, which is equal to zero, and then the
function repeats.

What about the variation with time? It is
similar. The function y = sin 2π

T t (= sin 2πft)
repeats after a time T.

θ
cos θ

1

–1

π 2ππ 3π
2 4

The cosine function y = cos θ looks exactly
like the function y = sin θ, except that it starts
with the value cos 0, which is equal to 1. It is
shifted by π

2 radians from the sine function. We
can also say that there is a phase difference of
π
2 radians between the two curves, or that they
are out of phase by π

2 radians.
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We can add one more feature to our descrip-
tion. The sine and the cosine vary between the
values +1 and −1. The functions A sin θ and
A cos θ vary between +A and −A, where the
maximum value, A, is called the amplitude.

The amplitude is particularly important
because it is related to the energy of the wave.
Let’s see what that relation is. Look again at
the time variation y = A sin 2π

T t. As the value of
y changes from zero to +A, to zero, to −A and
back, it moves with simple harmonic motion, as
if it were on a spring with spring constant k.
The energy of such a spring is 1

2 kA2. This is the
energy of the wave, proportional, as we see, to
the square of the amplitude.

We can also define the intensity of the wave.
It is the amount of energy that is transported by
the wave per second, divided by the area through
which it passes. Its SI unit is therefore the watt
per square meter, W

m2 . Since it is proportional to
the energy, it is also proportional to A2.

Finally, we can combine the space and
time variations in a single relation, y =
A sin( 2π

λ
x − 2π

T t). At the time t = 0 this rela-
tion becomes the space variation y = A sin( 2π

λ
x).

At this time (and at any other time) y varies
sinusoidally with x. Similarly, at the point x =
0 (or at any other point) y varies sinusoidally
with T.

Think of the quantity in brackets as an angle
in radians. As it goes through its cycle, from zero
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to 2π, y goes from zero to A, back to zero, to
−A, and to zero again. Each crest (y = A), each
trough (y = −A), and each of the points between
represents a point with a certain phase. For a con-
stant phase the quantity in brackets is constant.
For a phase of zero, for instance, 2π

λ
x − 2π

T t = 0,
or x

λ
= t

T , or x
t = λ

T . We see that a point with
constant phase moves with the speed λ

T , as we
saw before. This also shows again that as we
watch a crest, a trough, or any point with a par-
ticular phase, it moves with the wave speed λ

T or
f λ.

When two similar waves (same A, λ, T)
arrive at a point, they might be in phase, i.e., with
their crests arriving at the same time. In that case
they reinforce each other, resulting in a varia-
tion at that point between +2A and −2A. This is
called constructive interference. If they are water
waves, they will combine to have a crest twice
that of each wave alone. If they are sound waves,
the pressure will be twice that of a single one.

But if they arrive so that the crest of one
(y = A) occurs at the same time as the trough (y =
−A) of the other, they will cancel. This is called
destructive interference. At the point where two
water waves interfere destructively, the water
will not be displaced. If two sound waves inter-
fere destructively, there will be no sound.

EXAMPLE 5

What is the relation that describes a wave with a
wavelength of 3 m, a period of 4 s, and an amplitude
of 20 cm?

Ans.:
y = 0.2 sin( 2π

3 x − 2π
4 t) or y = 0.2 sin(2.09x − 1.57t)

(We are not explicitly putting the units into this
relation. But note that the “3” in the first fraction is
a distance, 3 m, and the “4” in the second fraction is
a time, 4 s, so that the quantity in the brackets has no
units at all.)

It could also be the cosine function y =
0.2 cos(2.09x − 1.57t).

This function has the value A = 0.2 m when
x = 0 and t = 0, while the sine function is equal to
zero when x = 0 and t = 0. The way in which y varies
with x and t is the same in the two cases. One starts at
the origin with the value zero, the other with its max-
imum value. Except for the phase difference between
them the two graphs look the same.

EXAMPLE 6

What is the frequency of a wave described by the
relation y = 4 sin(2x − 3t), where all quantities are
in SI units?

Ans.:
Here the coefficient of t is equal to 3 s. In the general
equation it is 2π

T or 2πf . Comparing the two we see
that 2πf = 3 and f = 3

2π
= 0.48 s−1 = 0.48 Hz.

11.3 Sound and musical scales

From the source and through
the medium

How is a sound wave generated? If we sing a
note, we cause our vocal cords to vibrate. If the
sound comes from a string instrument it is the
string that vibrates. The frequency is determined
by the length of the string, by its mass, and by
the tension. With a wind instrument, such as a
flute or clarinet, it is the length of the vibrating
air column that determines the frequency, and
with it the “pitch” of the note (from squeaky
high to booming low) that is produced. Quite
generally, when the source of a wave is a vibrat-
ing object, the frequency of the wave is equal to
the frequency of the vibration of the source.

The wave then propagates through a
medium. For a wave along a string the string is
the medium, for a sound wave in air it is the air.
As the wave travels through the medium, it is no
longer connected to the source, and its proper-
ties no longer depend on the source (except for
the frequency given to it by the source). In the
medium there is a displacement from equilibrium
and a restoring force back to the equilibrium con-
figuration. The restoring force depends on the
medium. For a wave along a string, for example,
it is determined by how tight the string is, i.e., by
the tension of the string.

The velocity of the wave depends on the
restoring force and also on the mass of the mate-
rial that is displaced. We see that the velocity is
determined by the properties of the medium in
which the wave travels. For a string under ten-
sion with a force F, and mass per unit length, M

L ,

the wave velocity is
√

F
M / L .
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Once the frequency and the velocity are
fixed, the value of the wavelength follows from
v = f λ. In the cases that we have described it
is a dependent variable that takes its value from
the frequency of the source and from the velocity
as determined by the medium. The two together
determine the magnitude of the wavelength in the
medium.

Standing waves

The waves that we have been talking about are
waves that transport energy away from the
source. They are traveling waves. If they en-
counter a barrier they are (completely or par-
tially) reflected. This happens, for instance, when
a water wave or a sound wave hits a wall, or
when a wave along a rope arrives at the end of
the rope where it is tied to a wall or tree.

Such a reflection can give rise to a quite
different type of wave. The most direct demon-
stration is to take a string or rope, fixed at one
end, and to shake the other end up and down.
If the frequency at which you shake the string is
just right, there will be a standing wave on the
string: each point on the string goes up and down
in simple harmonic motion, while the amplitude
of the variation varies from point to point.

We can see in more detail what hap-
pens mathematically. We’ll need the trigono-
metric relation that says that sin(A + B) = sin A
cos B + cos A sin B, and the one that says that
sin(A − B) = sin A cos B − cos A sin B, so that
sin(A + B) + sin(A − B) = 2 sin A cos B.

Let’s talk about a wave on a string, trav-
eling to the right, described by y = A sin
( 2π

λ
x − 2π

T t). The reflected wave goes to the
left, but is otherwise identical, with the
same values of A, λ, and T, so that it is
described by y = A sin ( 2π

λ
x + 2π

T t). Their sum
represents the standing wave. We can write this
sum, using our trigonometric relation, as y =
2A cos 2π

T t sin 2π
λ

x.

+ =

yyy

x x x

What does this standing wave look like? The
variation in space is described by sin 2π

λ
x. The

rest is the amplitude: 2A cos 2π
T t. We have a

sine wave in space, whose amplitude goes up and
down sinusoidally with time.

You can see why the frequency with which
you move the free end of the string has to be
just right. The fixed end is a point with no vibra-
tion at all. (Such a point is called a node.) The
end that you are holding is a point of maximum
vibration. (It is called an antinode.) The distance
between two adjacent nodes is 1

2λ. The distance
between a node and an adjacent antinode is 1

4λ.
The length of the string between the antinode
at your hand and the node at the fixed end can
therefore be 1

4λ, or 1
4λ plus some number of half

wavelengths. Standing waves are possible only at
these wavelengths.

The velocity is, as usual, determined by the
mass of the string and its tension. Since v is fixed,
and only certain wavelengths (λ) are possible, it
follows from v = f λ that only certain discrete
frequencies are possible.

The relation between the length of the string
and the wavelength is even simpler when both
ends of the string are fixed. The length of the
string can then only be a whole number of half
wavelengths.

Look at the unexpected and significant result
that we have come to. We started with quantities,
the frequency and the wavelength, that seemed to
be able to take on any value. We described a sit-
uation where the ends are constrained, either by
keeping one or both fixed or by holding one end
and causing it to oscillate up and down. The con-
clusion that we came to is that then only certain
values of the wavelength and frequency are pos-
sible. We have gone from continuous quantities
to discrete or quantized values. What is it that
brought about this change?

In an infinitely long string there would be no
reflection and no limit to the possible values of
the wavelength or frequency. The discreteness of
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the values, i.e., the quantization of the spectrum
of allowed values of the frequency, comes about
as a result of what we do at the ends of the
string. In other words, it comes about as a
result of what are called the boundary condi-
tions. We will see in the next chapter that there
are strong similarities to the quantization of the
energy spectrum of atoms, i.e., to the way in
which the discrete allowed energies of atoms
arise.

EXAMPLE 7

Go to the PhET website and open the simulation
Wave on a String. Set the tension to its maximum
and “damping” to zero. Select “oscillate” and “fixed
end.” Set the frequency to 50 and the amplitude to 1
or 2. Observe the standing wave. Why is it called a
“standing wave”?

Try to find another combination of frequency
and tension that also leads to a standing wave.

Ans.:
The points where there are maxima and minima
(the antinodes) and the points where there is no
motion (the nodes) remain in place. There is no wave
propagation.

It is not easy to find other combinations of fre-
quency and tension that produce a standing wave.
This is mainly because the simulation does not allow
these two quantities (or at least one of them) to be
varied continuously. The boundary conditions deter-
mine what happens at the ends. They can be nodes,
antinodes, or something between the two. The dis-
tance between two nodes is one-half wavelength. The
pattern of nodes and antinodes has to “fit” between
the two ends. (Here is another combination that you
can try. It comes close: tension at 0.8 of the maximum
value and frequency setting at 25.)

We have talked about waves on strings
because they are so visible. Vibrating air columns
have similar characteristics, and are particularly
interesting because they form the basis of musi-
cal wind instruments. In a flute or recorder (the
wooden, now often plastic flute that was com-
mon in the renaissance and baroque eras and that
had a strong revival in the twentieth century) the
air columns are set into vibration by the breath
of the player. In the clarinet and the oboe the
mouthpiece has reeds that vibrate and transmit
their motion to the air column.

Standing waves can be set up in air columns,
similar to those on oscillating strings. Here also
the boundary conditions determine the relation
between the length of the column and the wave-
length of the standing wave. There are two quan-
tities that vary sinusoidally. One is the pressure,
the other is the displacement, i.e., the distance
by which the air moves back and forth. We
will use the pressure. There is a pressure node
at the open end of the tube where the pressure
is (approximately) equal to that of the air out-
side the tube. There is a pressure antinode at the
closed end.

In a tube either open at both ends or closed
at both ends, i.e., with the same boundary condi-
tions at the two ends, the length of the vibrating
air column is a whole number of half wave-
lengths. In a tube closed at one end and open
at the other it is 1

4λ plus some whole number
(including zero) of half wavelengths.

EXAMPLE 8

A string is 90 cm long and is fixed at both ends. The
speed of waves along the string is 135 m/s. What
are the three longest possible wavelengths and the
corresponding frequencies of standing waves on this
string?

Ans.:
There are nodes at each end of the string. The distance
between nodes is 1

2 λ. Hence the three values are given
by L = 1

2 λ, L = (2)( 1
2 λ), and L = (3)( 1

2 λ), or λ =
2L, L, and 2

3 L, i.e., 1.80 m, 0.90 m, and 0.60 m.
The corresponding frequencies are 75 Hz, 150 Hz,

and 225 Hz.

EXAMPLE 9

An air column, 60 cm long, is open at one end and
closed at the other. What are the three longest wave-
lengths and the corresponding frequencies of standing
waves on this air column?

Ans.:
There is a node at one end and an antinode at the
other. The distance between one antinode and the
nearest node is 1

4 λ. The next distance is 1
4 λ + 1

2 λ, or
3
4 λ. The one after that is 1

4 λ + λ or 5
4 λ, so that λ =

4L, 4
3 L, and 4

5 L, i.e., 2.40 m, 0.80 m, and 0.48 m.
To find the corresponding frequencies we have

to know the wave velocity. The velocity of sound in
air at 20◦C (68◦F) is 344 m/s. With this value the
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frequencies are 344
2.40 = 143 Hz, 344

0.80 = 430 Hz, and
344
0.48 = 717 Hz.

Resonance

Frequencies at which a system such as a string
or an air column can vibrate easily are called
its natural or resonant frequencies. It requires
a relatively small amount of energy to produce
sustained oscillations at these frequencies.

Here is a demonstration of a natural fre-
quency: sit on a table or high chair so that
your leg dangles. Let it swing freely from the
knee. Now make it swing, first at half the fre-
quency and then at twice the frequency. This
illustrates that there is a natural frequency that is
easy to bring about. Other frequencies are quite
unnatural, and require more effort.

Another example is that of two similar musi-
cal strings near each other, with the same length
and under the same tension, so that they have
the same natural frequency. When one is made
to sound, the other will “resonate,” i.e., it will
vibrate also. The first string is the source of
the waves. The air between them transmits the
waves. It serves as the coupling between the
two. The second string receives the wave and is
pushed back and forth so as to vibrate also. The
amplitude of its vibration will be largest at its
own natural or resonant frequency. Some instru-
ments, such as the sitar, have a set of strings that
vibrate only through this mechanism.

Scales

What makes a pleasing sound? We are now ask-
ing a question about how sounds are perceived,
i.e., how our brain interprets the vibrations
received by the ears. We are therefore leaving
the objective description provided by physics for
the subjective question of how we feel when we
hear certain sounds. This is different for differ-
ent people and depends on what we are famliar
with.There are nevertheless some guidelines. It
turns out that two notes together sound “special”
to us when the ratio of their frequencies is small.
If the ratio is two, for example, we say that the
two notes are an octave apart. We can subdivide
the octave interval, and this is done differently in
different cultures. The western eight-note scale
has two versions, each of seven intervals. In the

major scale the intervals are in the ratios to the
first note of 1, 9

8 , 5
4 , 4

3 , 3
2 , 5

3 , 15
8 , 2. In the minor

scale the ratios are 1, 9
8 , 6

5 , 4
3 , 3

2 , 8
5 , 9

5 , 2.
These notes are sometimes called the mem-

bers of the natural scales. A problem arises if
we want to start the scale with notes of differ-
ent frequencies. In the C-major scale we start
with C. The next note, D, has a frequency 9

8
as large. The other notes follow with their fre-
quencies, D, E, F, G, A, B, and again C, now an
octave higher than at the starting point. If we
want to start with G, to get the G-major scale,
we get a whole new set of frequencies. This is, in
fact, what happens when people sing together,
or play instruments that produce notes whose
frequencies can be varied continuously, such as
those in the violin family. But what do we do if
we want to use instruments, such as the piano,
where each key produces a sound with a fixed
frequency?

The scale that is used for pianos is a com-
promise. We divide the octave into 12 equal
intervals, so that the frequency of each note is
larger than that of the previous one by 12√2 or
1.0595. The resulting notes of what is called the
equal tempered scale do not sound as “pure”
as those of the natural scales, but with these
fixed intervals we can start our scales with any
note. A capella singers (without instruments) and
string quartets are not constrained by the com-
promise, and can play the notes of the natural
scales. In the equal tempered scale the inter-
vals can be half notes with ratios of 1.0595 or
whole notes with ratios of 1.05952 or 1.225.
The natural scale is approximated by using five
whole-note intervals and two half-note intervals.
In the C-major scale, for instance, the half-note
intervals are between E and F and between B
and C.

The Doppler effect

When a police car comes toward you with its
sirens on and then passes you, you hear a
change in the pitch (the frequency) of the siren’s
sound. That’s the Doppler effect, first suggested
for lightwaves from stars by Christian Doppler
in 1842, and studied for sound waves soon
after.

Let’s see how it comes about. Think of a
bus stopped near a store. Passengers leave it, and
immediately start walking toward the store. The
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bus is our source, “emitting” passengers. The
store is the receiver.

Suppose a passenger leaves the bus every 5 s
and walks at a velocity of 1.2 m/s toward the
store. One passenger arrives at the store every
5 s. The frequency of passengers leaving as well
as arriving is 1

5 or 0.2 passengers per second. In
5 s a passenger goes (1.2)(5) = 6 m, so that the
passengers are 6 m apart as they walk.

Now let’s get to the interesting part. Let
the bus move toward the store at a speed of
0.4 m/s. The passengers leave the bus, one every
5 s, as before, and walk toward the store with
the same speed as earlier. The frequency with
which they leave the bus is still the same, but the
frequency with which they arrive at the store is
different. Each successive passenger has a smaller
distance to go from the bus to the store. In the
5 s between passengers leaving the bus, the bus
travels (5)(0.4) = 2 m. Instead of being 6 m apart
as they walk they are only 4 m apart. Still mov-
ing at 1.2 m/s, they now arrive at intervals of
x
v = 4

1.2 or 3.33 s, i.e., with a frequency of 1
3.33 =

0.3 passengers/second.

EXAMPLE 10

Go to the Java Applet on the Doppler effect, e.g.,
at http://lectureonline.cl.msu.edu/∼mmp/applist/dop
pler/d.htm.

(a) Click on the gray rectangle to make a blue dot
appear. This is the source of the waves. You can
stop the wave pattern by clicking on “s.” It will
resume when you click on “s” again. (Think of
the dot as representing the siren of a police car,
and the pattern representing the spread of the
sound waves.) Stop the pattern and estimate the
wavelength on the screen.

(b) Use the mouse to drag an arrow toward the
right-hand bottom corner. Use a velocity less
than v

vs
= 1. You are the observer of the waves

at that corner. What has happened to the
wavelength, frequency, and velocity that you
observe?

Ans.:
While the source moves toward you the waves arrive
with greater frequency. The speed of sound depends
on the medium and does not change. The wavelength
(the distance between successive lines on the wave
pattern) decreases.

You can see that if the bus moves in the
opposite direction, the frequency at the store (the
“receiver”) is smaller. The same considerations
can be used to describe the frequency changes
that occur when the receiver moves toward or
away from the source.

The situation is analogous when a wave is
emitted by a moving source. When it arrives at a
stationary receiver, the frequency is larger when
the source moves toward the receiver and smaller
when it moves away. Motion by the receiver has
a similar effect.

The applications of the Doppler effect are
of great importance. The original paper of 1842
described the possibility of measuring the speed
of stars with respect to the earth. However,
the Doppler effect for light was not observed
until 1901. Later (in 1912) it was shown that
light from other galaxies was shifted to lower
frequencies (“redshifted”). The observations led
to Hubble’s law, formulated by Edwin Hub-
ble in 1929, which says that the universe is
expanding at a rate that is now called Hubble’s
constant.

The reflection of microwaves (“Radar”) is
widely used for the location of weather patterns.
Rain, snow, sleet, and hail, even insects and
dust reflect the electromagnetic waves, and the
Doppler effect allows the speed of the reflect-
ing objects to be determined. Other applications
are the measurement of the speed of moving cars
with microwaves, using a Radar detector, and of
the rate of blood flow.

11.4 Maxwell’s great
contribution:
electromagnetic waves

Maxwell’s equations

They are known as Maxwell’s equations and are
the fundamental relations of electromagnetism,
but Maxwell didn’t invent them. All four of them
were there before him. Maxwell saw that one of
them was incomplete, added one more term, and
so opened up a whole new world. Let’s see what
they are.

The first is Gauss’s law, equivalent, as we
know, to Coulomb’s law: the flux of the electric
field out of any closed surface is proportional to
the net charge inside it.
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The second is Gauss’s law for magnetic
fields, easy to write down, since there seem to be
no isolated poles, no monopoles: the magnetic
flux out of any closed surface is zero.

The third is Faraday’s law, E = − dΦ
dt . The

induced emf around any loop is equal to the rate
of change of the magnetic flux through the loop.
We can also describe it differently: the emf drives
the current in a circuit; it is another way to talk
about the electric field that makes the charges go
around. The magnetic flux depends on the mag-
netic field. In other words, the electric field that
is created is proportional to the rate of change of
the magnetic field.

The fourth is the one we have to look at in
more detail. In its incomplete form it is Ampere’s
law. For any path around a current, I, the length
of the path multiplied by the component of the
magnetic field along the path is equal to μ0I.

Now what did Maxwell see? He said sup-
pose the wire is not continuous. There can still
be a current, either for a short time, or one going
back and forth (an alternating current, or “AC”).

a b

What happens as we take loops at a or b?
Experimentally, there is a magnetic field at b as
well as at a. If Ampere’s law is to hold, the result
must be the same regardless of whether the path
encircles the wire or the empty space. There could
also be a more strangely shaped path that is nei-
ther clearly around the wire nor around the part
where there is no current. There must be some-
thing else, something like a current, also in the
broken part!

He showed what it was and gave it the name
displacement current. (The name is not very help-
ful, since it doesn’t tell you anything about the
concept.)

Let’s connect the ends of the wires to large
plates. (Assume that they are infinitely large.) The
electric field between them, E, is equal to σ

ε0
. If

there is (temporarily) a current I, it is equal to
dQ
dt or to ε0A dE

dt .
While there is a current in the wire, charge

is moving to and from the plates. In the space

E

current
displacement current

between the plates there is then a changing elec-
tric field. The quantity ε0A dE

dt is equal to the
current in the wire leading to and from the plates.
By adding this term to I there are now two terms
that together remove the earlier discontinuity. In
each part of the circuit there is either a current or
a displacement current. The field times the path,
2πrB, is now equal to μ0(I + ε0A dE

dt ).
The adding of this one term to the fourth of

the equations was so significant that the whole
set is now known as Maxwell’s equations.

What is it that is so important about the term
with dE

dt ? It is like Faraday’s law, but with the
role of the electric field and the magnetic field
reversed. The two together lead directly to the
existence of electromagnetic waves.

Let’s see how this comes about. Faraday’s
law shows that an emf, and therefore an electric
field, can be produced by a changing magnetic
field. The magnetic field is produced in the whole
region, not just at a point. The term in dE

dt (the
displacement current) shows that, in turn, a
changing electric field produces a magnetic field,
again in the surrounding region.

If the field (B or E) changes with time like a
wave (i.e., sinusoidally), the slope, or derivative
( dB

dt or dE
dt ), will also change with time in a similar

way. Faraday’s law shows that a changing mag-
netic field gives rise to a changing electric field.
The fourth equation now shows that a changing
electric field produces a changing magnetic field.
The two equations together show that a change
in either one of the fields gives rise to a changing
field of the other kind. The changing magnetic
field produces a changing electric field, leading,
in turn, to a changing magnetic field, which leads
to a changing electric field, and so on. The two
kinds of fields chase each other through space,
each giving rise to the other, propagating on their
own, cast loose from their source, continuing
their journey as an electromagnetic wave.

Of course this can be shown rigorously,
mathematically. The velocity of the waves can be
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calculated from the equations, and is 1√
μ0ε0

.

Since μ0
2π

= k′ and 1
4πε0

= k, μ0ε0 = k′
2k = 10−7

9×109

or 1
9×1016 SI units, and c = 1√

μ0ε0
is 3 × 108 m/s.

These are not the units or quantities that
were used in Maxwell’s days, but the result is the
same. Maxwell knew (from experiments by oth-
ers) that the speed of light was about 3 × 108 m/s.
He not only showed that the equations predict
the existence of electromagnetic waves, but it
also became clear that lightwaves must be just
this kind of wave.

Look at what a remarkable result this is:
μ0 and ε0 are the constants that are needed to
describe the forces between charges at rest and
between currents. Now they are seen to describe
also the velocity of electromagnetic waves, which
evidently include lightwaves.

Does this mean that electromagnetic waves
can be generated with only charges and currents?
Yes, Hertz showed that, but not until much later,
in 1888, more than two decades after Maxwell’s
work. Today every radio and TV transmittor,
every microwave oven and cell phone system do
just that.

The electromagnetic spectrum

Electromagnetic waves can have wavelengths
larger than hundreds of meters and smaller than
the diameter of a proton. They are united in their
speed through empty space, c (= f λ), equal to
3 × 108 m/s. They can be classified by their fre-
quency, or equivalently by their wavelength, and
all form part of the electromagnetic spectrum.
We give names to the different regions of the
spectrum, but the way we do it is not very con-
sistent. Some, like visible light, are characterized
by their receiver, and some, like gamma rays,
by their emitter. The regions overlap, and their
boundaries are not precise.

Light is what we see. The wavelengths to
which the eye is sensitive range roughly from
400 nm at the small-wavelength, high-frequency
(violet) limit to 700 nm at the large-wavelength,
low-frequency (red) end of the visible spectrum.
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All matter consists of charges, and all mat-
ter is in motion. In gases the atoms move and
collide with other atoms. In solids they oscillate
about their equilibrium positions. This is their
thermal motion. The accelerating charges lead
to changing electric fields, hence to changing
magnetic fields, and so to electromagnetic waves.
Every object radiates electromagnetic waves
with a range of frequencies that depends on its
temperature. The sun and the other stars are so
hot that they emit all parts of the visible spec-
trum and appear white. The part of the spectrum
emitted by hot bodies with frequencies larger
than those that are visible is called ultraviolet,
and the part with lower frequencies is called
infrared. A hot stove may emit radiation with
frequencies into the visible part of the spectrum
and be “red hot,” but all objects, regardless of
their temperature, emit infrared radiation. This
is so for everything around us, including our own
bodies.

Gamma rays are electromagnetic waves
emitted by nuclei. The name “x-rays” is given
to the radiation emitted by atoms. The frequen-
cies of x-rays are generally smaller than those of
gamma rays, but there is some overlap. (We will
see later that the frequency of the radiation is
related to its energy. The greater frequency of
gamma rays is related to the much greater spac-
ing of the energy levels of nuclei compared to
those of atoms. This is because nuclei are held
together by the strong nuclear force, while the
energy that holds the electrons to the nucleus in
atoms is the much weaker electric force.)

The term x-rays is also used for the elec-
tromagnetic waves that are emitted by electrons
that are accelerated when they are not bound in
atoms. The reason is that both kinds are emitted
by an x-ray tube, where a beam of electrons is
stopped when it hits a target made of tungsten or
another heavy metal. (There is more about this
in the next chapter.) A particularly strong x-ray
source is the synchrotron, a device in which elec-
trons are accelerated by a magnetic field so that
they move in a circle.
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Electrons moving back and forth in a cir-
cuit or in an antenna give rise to radio waves.
They usually have wavelengths from hundreds
of meters down to a few meters. The alternating
current that we normally use has a frequency of
60 Hz, and generates electromagnetic waves with
a correspondingly long wavelength. Microwaves
are generated by electrons oscillating in vacuum
tubes and have smaller wavelengths, of the order
of centimeters.

The capacitor and the energy
of the electric field

We introduced the capacitor in the example at
the end of Chapter 8. It consists of two plates,
one carrying a charge Q and the other a charge
−Q, with a potential difference V between them.
If we use the approximation that the area of
each plate, A, is large, and the distance, d,
between them is small, then the electric field,
E, in the volume between the plates is uni-
form, and V = Ed. The surface charge density,
σ, is equal to Q

A . The capacitance is defined

as Q
V . It is the amount of charge that can be

stored on one of the plates for each volt of
potential difference between them. It is equal
to σA

Ed , and since the field between two large

(assumed infinite) plates is σ
ε0

, it is equal to ε0A
d .

We see that the capacitance depends only on the
geometric configuration, i.e., on the size of the
plates and the distance between them, and not on
the amount of charge or the potential difference.

Consider what happens as we charge a
capacitor by connecting it to a battery. Charge
transfers from one plate to the other. At first there
is no potential difference, and it takes little work
to transfer the first bit of charge, ΔQ. As more
charge accumulates it takes more and more work
to transfer an amount ΔQ, as the work, VΔQ,
becomes larger. To transfer the amount Q takes
an amount equal to the area under the curve of
V against Q. This is equal to 1

2 QV .
This is the energy stored in the capacitor.

It can also be written as 1
2 CV2. If we substitute

the expression for the capacitance, C = ε0A
d , and

V = Ed, we see that the energy, U, is 1
2 ε0AdE2,

and the energy per unit volume, U
Ad , is 1

2 ε0E2.
This expression for the energy per unit volume,
or the energy density, holds also for other electric
fields.
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It is possible to show also that the energy
density of the magnetic field in a long solenoid is
B2

2μ0
. This is also the energy density in any other

magnetic field.

The propagating fields

Look again at a loop of wire in which a cur-
rent is induced by a changing magnetic field. The
induced current is there as a result of the induced
emf. There is an induced electric field along the
wire of the loop in accord with Faraday’s law.
The electric field is in the plane of the loop, while
the magnetic field is at right angles to the plane
of the loop: E and B are perpendicular to each
other.

E

B

x

y
zdirection of propagation

In an electromagnetic wave E and B are at
right angles to each other and perpendicular to
the direction in which the wave travels. (The vec-
tor E × B is at right angles to both fields and is in
the direction of propagation.)

As the wave travels, both E and B oscillate,
in phase, both in space and in time. In other
words, as the wave passes a particular point,
the magnitude E at the point varies from its
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maximum value Emax to 0 to −Emax and
back with the frequency of the wave, as E =
Emax sin ωt. At the same time the magnitude B of
the magnetic field varies from Bmax to 0 to −Bmax

and back, in phase with E. Similarly, a snapshot
of the fields at a particular moment shows the
sinusoidal variation as a function of z, the direc-
tion of propagation, i.e., both Emax sin kz and
Bmax sin kz, along the direction of propagation
of the wave.

In an electromagnetic wave both kinds of
fields travel together and both carry energy. This
is one of the most important features of the
waves: the fields have energy, and the electro-
magnetic waves transport that energy.

Every electromagnetic wave, whether it is
a radio wave, microwave, lightwave, x-ray, or
gamma ray, consists of electric and magnetic
fields moving through space together. Each wave
carries energy. This is how we get the energy from
the sun that makes our life on earth possible. This
is how we get the signals to our radios, TV sets,
and cell phones, the radiation that warms our
skin, and that which we see with our eyes.

How do we know the waves are there? We
don’t see the fields or feel them directly. We know
about them only when they exert forces on elec-
tric charges. We have to return to the beginning:
in an electric field there is a force on a charge. In
an electromagnetic wave there is an oscillating
electric field. A charge in the path of such a wave
is set in motion, oscillating under the action of
the force provided by the wave’s electric field.
This is what happens when an electromagnetic
wave is detected, whether it is in an antenna, on
our skin, or in the eye.

When we discussed what we mean by the
word “real” (in Chapter 5) we shied away from
a definition of reality. Regardless of the def-
inition, there are few who would doubt that
electric fields, magnetic fields, and their joint
dance through space are real.

11.5 Observing interference
of light

Young’s double slit experiment

That light waves are electromagnetic waves
became clear from Maxwell’s work in about
1862. But the wave properties of light had been

established by 1801, principally when Thomas
Young showed that light could exhibit the prop-
erties of interference.

Wave properties become apparent primar-
ily when the waves encounter an opening or
an obstacle that is not too much larger than
their wavelength. For visible light this is between
about 400 nm for violet light and 700 nm at the
red end of the spectrum. These distances are so
small that we are normally not aware of the wave
properties of light, and it takes special efforts
to observe them. Young’s double slit experiment
provides the most famous and direct demonstra-
tion of the interference of light, and hence of the
wave nature of light. Here is the experiment.

Δx Δx = λ

Two narrow openings, or slits, are illumi-
nated by a source of light of a single color.
Each then acts as a new source from which light
spreads out. When the waves from the two slits
arrive at a point on a surface or screen, they
have traveled different distances. One of them
has gone further than the other by an amount
Δx. If Δx is just one wavelength long, the crests
of the two waves will arrive at the same time.

There is then constructive interference, and
there will be a bright line on the screen with
the addition of the light from the two slits. The
same is true if Δx is equal to 2, 3, or some other
whole number of wavelengths. But if, for some
place on the screen, Δx is 1

2λ, the crest of one
wave arrives there at the same time as the trough
of the other, and there is destructive interference.
The two waves cancel, and there is no light on
the screen.

The result is that there are alternating bright
and dark lines on the screen. They are the result
of the interference of the lightwaves from the
two slits. This pattern could not be there if light
did not have the properties of waves. If you
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imagine shooting “bullets” of light rather than
waves, there would be no interference, and no
such pattern of bright and dark lines.

The spacing between the lines gives us a mea-
sure of the wavelength of light. The experiment
shows that it ranges from about 400 nm to about
700 nm, and that each value of the wavelength in
that range corresponds to a particular color. For
the interference pattern to be clearly seen, the
source of light needs to be of a single wavelength
and color, i.e., to be monochromatic.

EXAMPLE 11

Go to the PhET website and open the simulation
Wave Interference. Select “Light.” Click on “show
screen” and observe the waves.

Select “two slits” and move the barrier close to
the source. (You can drag it with the mouse or move
the pointer in the set of tools on the right. You may
also want to change the slit width.) Again observe
what you see. Click on “intensity graph” and look
at the result. How does the pattern change when you
change the wavelength?

Ans.:
The pattern on the screen shows the alternating bands
of light and dark that result from the interference of
the light from the two slits. The intensity graph shows
the variation of the intensity along the screen. The
distance between successive minima becomes smaller
when the wavelength decreases.

The diffraction grating

There are other experiments that show the inter-
ference of light, and we will explore some of
them. The first is the diffraction grating. The idea
is the same as in Young’s double slit, but there
are many slits.

Again each slit acts as a source of waves.
As in the double slit experiment, the interfer-
ence pattern is determined by the path difference
between the waves from the different slits. Look
at the direction at the angle θ to the original
direction of the light where the path difference
between the light from the first slit and that from
the next one is one wavelength. Then for the next
one it is 2λ, then 3λ, 4λ, and so on. The light
from all of the slits will interfere constructively.
If the distance between adjacent slits is d, we see
that the angle θ is given by sin θ = λ

d . There is

∆x 

d

also constructive interference from all the slits
when sin θ = 2λ

d , and, in general, for sin θ = nλ
d ,

where n is an integer. (For all other angles there
is destructive interference. Since there are many
slits, there is always another one from which the
light is out of phase by half a wavelength.)

For light with a single wavelength there is
constructive interference at the values of θ for
which sin θ = nλ

d . If the beam consists of light
with different wavelengths the angle for con-
structive interference is different for each. The
grating then separates the light, and allows us to
see the range of wavelengths that are present. The
distribution of colors is called a spectrum. More
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precisely, a spectrum is a graph of the intensity of
radiation as a function of wavelength (or another
quantity related to the wavelength).

Single slit diffraction

A diffraction grating could also be called an
“interference grating.” The word “diffraction”
is commonly used instead for some interference
phenomena, such as the pattern that occurs when
light passes through a single slit. In that case
alternating dark and bright bands occur because
of the interference of light from different parts
of the slit.
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To see this we divide the slit into parts. The
figure shows a slit of width s divided into 10
strips. We’re going to compare the light from the
five slits of the upper half to the light from the
five strips of the lower half. Let’s look at the first
strip in each of the halves, i.e., the first and the
sixth of these strips, at an angle such that there is
destructive interference of the light from the two.
The two strips are separated by a distance s

2 . For
destructive interference the path difference Δx

is 1
2λ, so that sin θ = 1

2 λ
1
2 s

, or sin θ = λ
s .

At this angle there is also destructive inter-
ference from the second and seventh strips, as
well as for the third and eighth, the fourth and
ninth, and the fifth and tenth. We see that at this
angle there is destructive interference for every
part of one-half of the slit and a corresponding
part of the other half. At this angle, therefore,
there is a dark band on the screen.

A similar analysis can be made for other
angles and other path differences. The result is
that there are again bands of bright and dark
fringes, as in the double-slit experiment, but their
origin and the angles at which they occur are
different.

We can extend the same considerations
to another situation. We have looked at light
stopped by a barrier, except for the single slit in
it. Suppose we reverse the arrangement, so that
light continues everywhere except for the space
that was occupied by the slit. We might guess
that the same kind of pattern will occur, and it
does! Other obstacles in the path of a light beam
can also give rise to diffraction patterns.

The lines or bands that we see in Young’s
double slit experiment, with a diffraction grating,
and in single-slit diffraction, have the shapes of
the slits. A similar effect occurs when sunlight
passes through the spaces between the leaves of
a tree. The pattern of light and shadows is to a
large extent the result of diffraction, and shows
the image of the sun. We are not usually aware
of that, and it is startling to see the effect at the
time of a solar eclipse, when the source of the
light, the sun, is no longer round. When the sun
is half obscured, for example, the light between
the shadows, still consisting of images of the sun,
is seen to be made up of half circles.

Thin films

A common interference effect occurs when light
is reflected from both the bottom and the top of
a thin film.

For a beam incident at right angles to the
film, the light reflected from the bottom goes
farther by a distance 2d, where d is the film thick-
ness. The nature of the interference depends on
the relation between this path difference and the
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wavelength of the light. Here we have to know
that the wavelength in the film is different from
that in air: it is smaller by the factor n, the index
of refraction, i.e., λfilm = λair

n . (On the figure the
light rays are shown at angles different from 90◦,
so that the rays reflected from the top and from
the bottom are separated.)

Since light of different colors has different
wavelengths, the conditions for constructive and
destructive interference will be different for dif-
ferent colors. The colors seen in soap films, and
in oil films on water, are interference patterns.
They come about because of the differences in
wavelength, because the path difference is differ-
ent at different angles, and as a result of thickness
variations in the films.

The Michelson interferometer

A fascinating application of interference that
had a profound influence on the history of phys-
ics is the Michelson interferometer. It allows
measurements of distance with great precision,
because they are made in terms of units equal to
the wavelength of light. It can also be used to
compare the velocities of light in two directions
at right angles to each other. This was done in
1887 in the Michelson–Morley experiment. The
experiment showed that there was a fundamen-
tal difference between the behavior of lightwaves
and mechanical waves, indicating that Newto-
nian mechanics could not adequately describe
electromagnetic phenomena. It paved the way for
the development, 18 years later, of the special
theory of relativity.

*S #1

#2

A half-silvered mirror lets some of the light
from a monochromatic source through to mir-
ror #1. Some of it is reflected to mirror #2. The
light returns from mirror #1, and some of it is
reflected toward the eye of the observer. Some
of the light that is reflected from mirror #2 goes
through the half-silvered mirror to the eye. The
two rays combine and give rise to interference,
the nature of which depends, as before, on the
path difference. If the path difference is equal to
a whole number of wavelengths, there is con-
structive interference. If it is a whole number
of wavelengths plus a half wavelength, there is
destructive interference.

The interferometer can be used to mea-
sure distances in terms of the wavelength of
light. If one of the mirrors, #1 or #2, is moved
through 1

4λ, the path difference changes by 1
2λ.

Constructive interference changes to destructive
interference, and what the eye sees as it looks
along the line of the diagram changes from bright
to dark.

At an angle to the lines of the light path
in the diagram the distances are larger. What is
observed by the eye is an interference pattern con-
sisting of a series of concentric rings, alternately
bright and dark. As one of the mirrors is moved,
the rings move inward or outward. A bright ring
is replaced by a dark ring when one of the mirrors
is moved through a distance of 1

4λ.

Coherence

In all our examples of ways to exhibit the interfer-
ence of light there was a single source, with a split
into different paths from the source to a place
where they recombined. You might ask why we
cannot observe interference with beams from two
separate light bulbs, instead of going through the
more or less elaborate splitting procedure. The
answer lies in the nature of the radiation emitted
from a hot object, such as the filament in a light
bulb. The atoms of the filament emit flashes of
light, first one, then another, and another, ran-
domly and independently. The flashes come from
different places and at different times.

This is very different from the beams that
we described earlier, which come from the same
source, split into two or more parts along dif-
ferent paths, and then recombine. The two dif-
ferent parts in Young’s double-slit experiment,
for example, start out together (in phase) and
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then are out of phase because one goes further
than the other by the path difference Δx.

The flashes from the hot filaments arrive at
different times, and so the light from two sep-
arate light bulbs cannot lead to interference. Is
it ever possible to have interference effects from
two separate light sources? They have to have
the same wavelength and there has to be a defi-
nite phase relationship between the two sources.
This is possible with lasers. A laser emits a beam
of light with a single wavelength, rather than the
random flashes with a range of wavelengths emit-
ted by a hot object. The light from two similar
lasers can therefore lead to interference patterns.

The light from lasers is referred to as coher-
ent, while the light from a hot body, such as a
light bulb filament, is incoherent.

11.6 Reflection and refraction

The laws of reflection
and refraction

Normally, we are used to thinking of light as
traveling in straight lines. In the absence of the
openings and obstacles that lead to interference
this is, in fact, what happens. The straight-line
rays can still change direction. One way is by
reflection, as from a mirror. Another is by refrac-
tion, the change of direction that occurs when a
ray goes from one medium to another.

θ
2

θ
1 θ

1

n
2

n
1

The figure shows an incident ray, a reflected
ray, and a refracted ray. The incident ray makes
an angle θ1 with the normal to the surface (a line
perpendicular to the surface), which is called the
angle of incidence. The angle of the reflected ray
with the normal, also θ1, is called the angle of
reflection. The fact that the two angles are equal
is called the law of reflection.

The angle of a ray changes when it goes from
one medium to another in which the speed of
light is different. In empty space, i.e., in a vac-
uum, the speed of light is c = 3 × 108 m/s. In any
other medium it is c

n , where n is called the index
of refraction.

If the angle with the normal in one medium,
with index of refraction n1, is θ1, and in the
second medium the values are n2 and θ2, then
n1 sin θ1 = n2 sin θ2. This is the law of refrac-
tion, or Snell’s law.

These are all of the fundamental principles
of the subject called geometric optics. There are,
however, many important and interesting appli-
cations. We can use the law of reflection to study
different kinds of mirrors. The law of refraction
leads to an understanding of lenses and opti-
cal instruments, such as the microscope and the
telescope.

Mirrors

How do we see ourselves in a plane mirror?
The figure shows a mirror, and a person,

Lucy, in front of it. It also shows two rays, com-
ing from her nose, and reflected by the mirror.

The two rays are looked at by another per-
son. They come from Lucy’s nose, but they seem
to come from a point behind the mirror. That
point is called the image of the point on her nose
where the rays originate. The rays only seem to
come from there. There are no actual rays from
her at the image. This kind of image is called a
virtual image.

With a parabolic mirror rays coming to the
mirror parallel to the axis are reflected so that
they cross at a point on the axis called the focus.
The fact that they do that is a geometric property
of a parabola. It is much easier to make spherical
mirrors than parabolic mirrors. Rays parallel to
the axis of a spherical mirror do not come to a
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focus exactly. But for rays near the axis they do so
approximately. Let’s see how this comes about.

P

CF θ

θ
θ

Q

Look at a ray that comes to the mirror paral-
lel to the axis. It comes to the mirror at a point P,
and is reflected toward the axis, which it crosses
at the point F, the focus. The line from P to the
center of curvature of the mirror (C) is the radius
of the spherical surface. It is perpendicular to the
mirror, i.e., it is the normal to the surface, so that
both the incoming and the reflected rays make the
same angle, θ, with it. The angle of the line PC
with the axis is also θ. The triangle PCF has two
angles equal to θ so that it is isosceles and its sides
PF and FC have the same length.

The axis crosses the mirror at the point Q.
The lengths PC and QC are the same, since they
both go from the mirror to its center of curvature.
The lengths PF and QF are not the same, but we
will make the approximation that they are. The
smaller the diameter of the disc of the mirror is
compared to its radius of curvature, the more
closely this will be true. In this approximation
it doesn’t matter how far P is from the axis—
all the rays coming to the mirror parallel to the
axis cross the axis at the point F. Moreover the
focal length QF = f is seen to be equal to half
the radius of curvature. (In fact, QF changes as
θ changes, so that the point where the reflected
ray crosses the axis also changes.)
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A spherical mirror can produce an image
that is different from the virtual image of a
plane mirror. In the diagram the rays originate at
the object, and after reflection they converge at
the image. This time the rays actually go to the
image. It is a real image. It can be caught on a
piece of paper or on a screen. This is not so for
a virtual image, a point on the other side of the
mirror from which the rays seem to come.

We can see where the image is by following
some representative rays. A ray coming to the
mirror parallel to the axis (1) is reflected so as to
go through the focus. Conversely, a ray through
the focus (2) is reflected so that it is then parallel
to the axis. A ray along the line through the cen-
ter, C, of the spherical surface (3) is reflected so
that it returns along the same line.

The figure shows an object at a distance fur-
ther from the mirror than C, and a real image,
smaller and inverted, between the focus and the
center.

Since the rays follow the same path in either
direction, we can interchange the image (I) and
the object (O), and see that for an object between
the focus and the center there is a real, inverted,
and magnified image.

There is a simple relation between the object
distance dO, the image distance dI, and the focal
length f . The figure shows that the height of the
object (hO) and the height of the image (hI) are
related in two ways. First, we see that because the
two angles marked φ (Greek phi) are the same,

hO
dO−f = hI

f , or hO
hI

= dO−f
f .

θ
θQ

O
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I

d
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h
O

h
I
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A ray from the object to Q goes to the
image, forming two similar triangles that show
that hO

dO
= hI

dI
or hO

hI
= do

dI
.

Equating the two expressions that are each
equal to hO

hI
, we get dO−f

f = dO
dI

, which can be

written as dO
f − 1 = dO

dI
. Dividing each term by

dO we get 1
f − 1

dO
= 1

dI
or 1

dI
+ 1

dO
= 1

f .
This relation also holds for mirrors that

curve outward, or convex mirrors, if f is taken
to be negative, and for virtual images if dI is then
taken to be negative. (Mirrors that curve inward
are called concave.)

We also see that the magnification hI
hO

is

equal to dI
dO

. We will take hO to be positive above
the axis. To avoid an extra negative sign we will
take hI to be positive when it is below the axis,
as it is when the image is real and inverted.

What happens when the object is between
the mirror and the focus? The figure shows the
representative rays. A virtual and magnified
image is produced, right-side up. This is what
happens in a magnifying mirror like those used
in bathrooms for shaving and makeup.
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EXAMPLE 12

A concave mirror has a radius of curvature of 30 cm.
(a) An object is 90 cm from the mirror. What is the

position of the image? What kind of image is it?
What is the magnification?

(b) Repeat part (a) for dO = 20 cm.

(c) Repeat part (a) for dO = 10 cm.

Ans.:
(a) f = 1

2 r = 15 cm.
1
dI

= 1
f − 1

dO
= 1

15 − 1
90 so that dI = 18 cm.

[We can use 1
f − 1

dO
= dO−f

fdO
so that dI =

fdO
dO−f = (15)(90)

90−15 = 18 cm.]
hI
hO

= dI
dO

= 18
90 = 0.20.

The image is real and inverted, 18 cm in front
of the mirror. The magnification is 0.20, i.e., the
size of the image is 0.20 times that of the object.

(b) 1
f − 1

dO
= 1

15 − 1
20 = 4−3

60 = 1
60 . di = 60 cm.

Magnification = dI
dO

= 3.
The image is real and inverted, 60 cm in front

of the mirror. The magnification is 3, so that the
image is three times as large as the object.

(c) 1
dI

= 1
15 − 1

10 = 2−3
30 = −1

30 . di = −30 cm.
The image is virtual, right-side up, 30 cm

behind the mirror. The magnification is −3. The
image is again three times as large as the object,
but not inverted.

Lenses

Lenses are among the most familiar optical
devices. They are used as pocket magnifiers, cam-
era lenses, and eyeglasses. In combination they
are the constituents of telescopes and micro-
scopes. Lenses usually have spherical surfaces.
Each ray’s path can be followed and analyzed by
using Snell’s law. Computers now allow this to be
done much more efficiently than earlier, and this
has led to the development of complex lenses,
consisting of many parts, even in inexpensive
cameras.

It is also possible to use an approximate
analysis similar to that which we have used for
mirrors. Just as in that case, it is most accurate for
rays close to the lens axis. Lenses, like mirrors,
have focus points. There are two of them, one
on each side of the lens. We will start with lenses
that are thicker in the middle, called convex or
converging lenses. (Lenses that are thinner in the
middle are called concave or diverging lenses.)

F

The figure illustrates that rays arriving par-
allel to the axis are refracted so as to cross at
the focus. This leads us to two representative
rays: one that comes to the lens parallel to the
axis (1), and is refracted so as to go through
the focus, and a second that comes through the
focus (2), and is refracted so as to leave the lens
parallel to the axis. A third representative ray
goes through the center of the lens (3). For a
sufficiently thin lens, and for rays close to the



244 / Waves: Mechanical and Electromagnetic

axis, this ray goes through the lens, to a good
approximation, without changing direction.

O

I

F

F

1

2

3

The figure shows the three representative
rays coming from an object and converging to
an image. In this case the image is real, i.e., the
rays actually go to the image. It is inverted and
reduced in size. Since the rays can follow the same
path in both directions, the image and object can
be interchanged. If this is done the image is still
real and inverted, but it is magnified.

The situation is quite different for an object
between the lens and one of the focal points. In
that case the rays, after being refracted by the
lens, diverge. There is no real image. After they
go through the lens, however, the rays seem to
come from a point on the same side of the lens as
the object. This is the virtual image. It is right-side
up and magnified.

Concave lenses, by themselves, produce only
virtual images, right-side up and reduced in size,
regardless of the position of the object.

EXAMPLE 13

Go to the PhET website and open the simulation Geo-
metric Optics. Select “principal rays,” “curvature
0.8,” “refractive index 1.87,” and “virtual image.”

Move the object back and forth and observe
what happens to the image and the magnification.
What happens as the object moves into the region
between the focus and the lens?

Ans.:
When the object is outside the focus the image
becomes larger as the object moves closer to the focus.
When the object moves past the focus the image
becomes virtual and magnified. It is then on the same
side of the lens as the object.

The thin-lens relation

Let’s look once more at the representative rays
that show the formation of a real image by a thin

convex lens. Call the heights of the object and
the image hO and hI. Call the distances from the
object and the image to the lens dO and dI. Look
at the two similar triangles whose sides are hO

and dO for the one on the left and hI and dI for
the one on the right. They both contain the angle
marked θ, so that hO

dO
= hI

dI
or hI

hO
= dI

dO
.

O

I

d
I

h
I

d
O

h
O

f                            d
I
- f

θ
θ

Φ
Φ

Let f be the focal length, i.e., the distance
from either focus to the lens. A second pair of
similar triangles, both with the angles marked φ,
has sides hO and f between the lens and the focus
on the right and hI and dI − f between the same
focus and the image. They show that hO

f = hI
dI−f

or hI
hO

= dI−f
f .

Combining the two relations we get dI−f
f =

dI
dO

or dI
f − 1 = dI

dO
. Divide by dI to get 1

f − 1
dI

=
1

dO
, or 1

dO
+ 1

dI
= 1

f .
This thin-lens relation describes not only the

situation that we started with, for a convex lens
with a real image. It can also be used for a con-
cave lens if the focal length is taken to be negative.
For a virtual image dI needs to be taken to be
negative.

Just as for the spherical mirror, the magnifi-
cation hI

hO
is equal to dI

dO
.

EXAMPLE 14

Thin lens calculation

A thin convex lens has a focal length of 15 cm.

(a) An object is 90 cm to the left of the lens. What
are the position and nature of the image? What
is the magnification?

(b) Repeat part (a) for dO = 20 cm.

(c) Repeat part (a) for dO = 10 cm.

Ans.:
The calculations are the same as for the previous
example with the spherical mirror. Since the focal
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length is the same in the two cases, and the object
distances are the same, the answers are the same.
The only differences are that the real images (parts
a and b) are on the right-hand side of the lens and
the virtual image (part c) is on the left-hand side of
the lens.

Total internal reflection

Look at what happens when a ray in one medium
comes to a boundary with a medium whose
index of refraction is smaller. The angle of reflec-
tion is then larger than the angle of incidence.
If the angle of incidence, θ1, is now gradually
increased, the angle of refraction, θ2, becomes
larger, and eventually reaches 90◦. The angle of
incidence at that point is called the critical angle
θcr. What happens if the angle of incidence is
increased still further? There is then no refracted
ray at all! The ray is reflected back into the first
medium. This is called total internal reflection.

θ
cr

n
2

n
1

n
2 > n

1

EXAMPLE 15

What is the critical angle at the interface of glass with
an index of refraction of 1.5 and air?

Ans.:
Snell’s law is n1 sin θ1 = n2 sin θ2. Use the sub-
scripts 2 for air and 1 for glass. In air n2 is close
to 1. The critical angle is θcr = θ1 when θ2 = 90◦ so
that 1.5 sin θcr = 1. Hence sin θcr = 1

1.5 = 0.67 and
θcr = 42◦.

Light entering a glass or plastic cylinder at
one end is totally reflected each time it hits the
wall of the cylinder at an angle greater than the
critical angle, until it emerges at the other end.
This is the principle of fiber optics. The attenua-
tion of the light as it travels along a thin fiber can
be very small, and light signals can be carried by
optical fibers with much less loss than for electric
signals along copper wires.

Bundles of thin fibers, a few μm in diam-
eter, can transmit images from one end to the
other, even when they are bent. This has led
to a number of important medical applications.
One is the exploration of the inside of the
human body, as for the stomach with an endo-
scope and the colon with a colonoscope. The
images provided by fiber optics can be combined
with miniaturized instrumentation for arthro-
scopic surgery, which requires only very small
incisions.

EXAMPLE 16

The figure shows a beam of light entering a 45◦ prism
made of glass (n = 1.5). What is the subsequent path
of the beam?

Ans.:
Since the angle of incidence is 45◦, and therefore
larger than the critical angle of 42◦, the beam is totally
reflected. It is reflected a second time at the lower
surface and emerges in the direction opposite to its
original direction.

Resolution

When light passes through a hole, or aperture, or
through a lens, what we see is a diffraction pat-
tern. When the aperture is large compared to the
wavelength, we are not usually aware of that.
The diffraction effects become larger and more
apparent when the aperture is small or when we
are trying to resolve very small or distant objects.
They provide a limit to the validity of geomet-
ric optics. When they become observable it is no
longer appropriate to consider light to be propa-
gated as rays that travel through the aperture in
straight lines.
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Camera and eye

In a camera a lens produces a real image, which
is then recorded by a film or other “sensor.”

Even in simple cameras the lens is made
of several components, designed to reduce the
deficiencies of single lenses. “Chromatic aberra-
tion,” for instance, refers to the fact that for each
color (wavelength) there is a different index of
refraction and focal length, so that the image of
a blue object is formed at a different place than
the image of a red object. This effect can be par-
tially compensated for with a lens made of two
or more components.

Lenses generally have spherical surfaces
because other shapes are much more difficult to
make. Rays that come from the axis to such a
lens at a point far from the axis do not come to
an image at the same distance as rays close to
the axis. This is called “spherical aberration.” In
addition distortions can occur from objects that
extend far from the axis.

The same considerations apply to the eye.
The lens of the eye forms an image on the ret-
ina. The retina contains the sensors that send
signals to the brain via the optic nerve. In con-
trast to the lens of a camera the eye’s lens can
change its curvature and hence its focal length
under the action of the muscles that surround it.
In other words, it can adapt so as to create images
of objects that are at different distances from it.

In cases where the eye’s lens cannot adapt
correctly, it is usually possible to to use external
lenses (“eyeglasses”) to correct for the deficien-
cies of the lens of the eye. In a nearsighted eye the
rays converge more than is required to form an
image on the retina so that the image is in front
of the retina. A diverging lens in front of the eye
can correct for that. In a farsighted eye the rays
from an object do not converge sufficiently, and
are refracted so that they head toward an image
behind the retina. A converging lens is used to
correct this problem. The strength of eyeglasses is
usually measured in diopters, equal to 100

f , where
f is the focal length in cm.

The magnifying glass

When a lens is used as a magnifying glass, the
object is between the lens and one of the focal
points. The virtual image is on the same side of
the lens as the object, right-side up and magni-
fied. When the object is moved closer to the focus,
the image becomes larger.

You can make the image huge by letting the
object get really close to the focus. The magnifi-
cation ( hI

ho
) can be as large as you like. So why

does that not give you all the magnification that
you would ever want? The downside is that as
the image becomes larger it moves further away.
Since you have to stay on the other side of the lens
from it, the fact that it gets so much larger doesn’t
do you any good. The image doesn’t appear to
become larger.

We need a new criterion to describe what
happens. The magnification hI

ho
isn’t very useful

here. What matters is the angle that the image
subtends at the eye. That’s hI

�I
, where �I is the

distance from the image to the eye. You want
this angle to be as large as you can make it. What
the lens does for you is to make this angle larger
than the angle that the object subtends at your
eye without the lens.

How large is that angle without the lens?
Can’t you make it larger just by moving your eye
close to the object? Yes you can, but there’s a
limit. At some distance the eye can’t focus any
more. Your eye has a near point, and when you
move an object closer than that it looks blurred.

That gives us our criterion: we need to use
the angular magnification. The best we can do
without the lens is to put the object at the near
point. If this point is a distance s from the eye,
the angle subtended by the object at the eye is
ho
s . The lens makes it possible for both the object
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and the image to subtend the angle θ′ = ho
do

. The

angular magnification is then θ′
θ

= ho
do

s
ho

= s
do

.
We can express this relation in terms of dI

by using 1
do

+ 1
dI

= 1
f , or 1

do
= 1

f − 1
dI

so that θ′
θ

=
s

do
= s( 1

f − 1
dI

). When the object is at the focus

(do = f ), 1
dI

= 0, and the angular magnification
is s

f .
It can be made a little larger by moving

the image to the near point, so that dI = −s.
(The distance to a virtual image is negative!).
In this case the angular magnification is θ′

θ
=

s( 1
f − 1

−s ) = s
f + 1.

Microscope and telescope

Some of the most interesting applications of
lenses are those that use them in combinations
where the image formed by one lens is the object
for a second lens. Two examples are the micro-
scope and the telescope. In a microscope one
lens is near the object and is called the objec-
tive. It forms a real enlarged image. This image
is the object for a second lens, the eyepiece, which
forms a virtual enlarged image of it.

O
1

I
2

I
1 
= O

2

A telescope can also be constructed of an
objective that produces a real image, which is
then observed with a magnifying glass. There

are, however, some different requirements. The
object is far away and you want the first image
to be as large as possible. This is best done with
a lens that has a long focal length. The image
is inverted, which may not be a problem for
astronomical observations but needs to be cor-
rected for use on earth. A third lens can be put
between the objective and the eyepiece to change
the orientation of the image. The resulting spy-
glass has the disadvantage that it is very long.
The modern equivalent is the prism binocular.
Two right-angled prisms are inserted between
the objective and the eyepiece. This shortens the
distance betwen the two lenses and also inverts
the image.

11.7 Where Einstein started:
electromagnetism
and relativity

The ether and the speed of light

Sound waves are propagated by the vibration
of atoms or molecules in air or other materials,
water waves by the motion of the water. Both
are examples of mechanical waves in a medium
that is disturbed as the wave passes. Sound can-
not travel through empty space. Electromagnetic
waves are different. The generation of electric
fields from changing magnetic fields, described
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by Faraday’s law, and the generation of mag-
netic fields by changing electric fields do not
require a material, a medium. This is confirmed
by the fact that electromagnetic radiation reaches
us through empty space from the sun and other
stars, while the sound of the violent explosions
that take place there cannot reach us. This seems
perfectly natural to us.

It didn’t seem so natural in the nineteenth
century, when every other known kind of wave
required a medium whose constituents could
move back and forth. So a new one was imag-
ined, the ether, as a medium for electromag-
netic waves. It was not a very comfortable
idea right from the beginning. It would have
to be there even where nothing else seemed to
be, and it would have to be able to vibrate
with the almost unimaginably high frequencies
required by the high speed of the waves. For
example, at one end of the visible spectrum the
frequency is about 1015 Hz, and the ether would
have to be able to vibrate that many times per
second.

There was a more subtle and more interest-
ing difficulty. Was the ether attached to the earth
or at rest with respect to the sun or some other
part of the universe? Just as the speed of sound
waves is measured with respect to the medium
in which they propagate, and is different in
systems moving with respect to it, so it was
expected for the electromagnetic waves as they
propagated in the ether. Experiments of great
sophistication and precision were made to detect
motion with respect to the ether, but no evidence
for such a motion was ever found.

The most famous and decisive of these
experiments was done by A. A. Michelson, who
had already made the most precise measurement
of the speed of light, and who now recruited
his colleague Edward Morley to collaborate
with him. It compared the speed of light along
two directions at right angles to each other. We
would expect a difference depending on the angle
between the earth’s motion and the motion of the
ether. However, no evidence for any such “ether
wind” was detected. The experiment led to the
startling conclusion that irrespective of the direc-
tion and the time of day or year, the speed of light
was the same.

This result is entirely in accord with
Maxwell’s equations. They lead to the same
speed, c, with no indication of any dependence

on a particular coordinate system. This is fun-
damentally different from the way mechanical
waves, like sound and water waves, behave.
A sound wave on a moving train has different
speeds with respect to the train and with respect
to the ground.

That the different kinds of waves should
behave so differently was not at all understood at
the time, and all attempts at reconciliation over
the next 17 years failed.

Only Einstein, in 1905, followed Maxwell’s
equations seriously when he said that the speed
of electromagnetic waves is c (= 1√

ε0μ0
= 3 ×

108 m/s) regardless of the frame of reference. He
was the only one not to try to make lightwaves
conform to the behavior of waves in materials,
i.e., to mechanical waves such as sound waves.
He took as his point of departure the simple fact
that Maxwell was right, that the speed of elec-
tromagnetic waves was c, and that it remained
so, regardless of any velocity of the frame of ref-
erence with respect to which the waves might be
observed.

The results were startling. If c is constant,
the dimensions, i.e., the observed lengths of
objects, are no longer constant and independent
of the motion of the object with respect to the
observer. They are subject to the Lorentz con-

traction by the factor
√

1 − v2

c2 , when determined
by an observer moving with a velocity v with
respect to the object. Time intervals also depend
on the relative motion, and are larger by the
reciprocal of the same factor, 1√

1− v2

c2

.

Kinematics of the special theory
of relativity: time dilation and
length contraction

Let’s see how these results come about. We will
do two “thought experiments.” For the first we
start with two mirrors a distance L apart. A beam
of light with its velocity c goes back and forth
between them. This is a primitive clock, marking
time intervals Δt between reflections, so that L =
cΔt and Δt = L

c .
Look at this clock while it flies by at a speed

v. The light beam has to go further between
reflections. If its speed continues to be c, the time
interval between reflections must be different.
Call it Δt′.
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L

v t’

L

The beam has to go along the hypotenuse
of the triangle whose sides are L and vΔt′, i.e.,
a distance

√
L2 + (vΔt′)2. It takes a time Δt′ to

traverse this distance, so that
√

L2 + (vΔt′)2 =
cΔt′, or L2 + v2(Δt′)2 = (cΔt′)2.

Dividing by c2 we get L2

c2 + v2

c2 (Δt′)2 =
(Δt′)2, or L2

c2 = (Δt′)2(1 − v2

c2 ).

But L
c = Δt, so that (Δt)2 = (Δt′)2(1 − v2

c2 ),

or Δt′ = Δt√
1−(v2 / c2)

.

The denominator is less than one, so that
Δt′ is greater than Δt. The time interval in the
moving system is greater, and we refer to the
phenomenon as time dilation.

Δt is the time interval in the system in
which the observer is at rest with respect to the
clock. It is called the “proper time interval.” In
all other systems the observer is moving with
respect to the clock, and the time interval (Δt′) is
longer.

For the second thought experiment we look
at a spaceship, with its astronaut, A, traveling
between points in two cities on earth, where
you are the observer. As the spaceship travels
between the two cities, A, at rest with respect
to his clock, records the time interval Δt. You,
on earth, see the longer time interval, Δt′ =

Δt√
1−(v2 / c2)

. Both you and A measure the same

relative velocity v.
What about the distance between the two

cities? We’ll call that distance, as you observe it,
L. You can take your time measuring it because
the cities are at rest in your coordinate system.
That’s why we call this the “proper distance.”
As you watch the spaceship fly by at the speed

v, you see that it takes a time Δt′ to traverse the
distance L, so that v = L

Δt′ .
A, in the spaceship, sees the two cities

pass her in the shorter (“proper”) time interval
Δt. The relative velocity is still v. The distance
between the cities must therefore, as she sees
it (L′), be smaller than the proper distance, L,
which is the one observed by you on earth:
v = L′

Δt .
We see that the proper distance (L) goes with

the longer time interval (Δt′), while the proper
time interval (Δt) goes with the shorter distance

(L′), and L′ = vΔt = L Δt
Δt′ , or L′ = L

√
1 − v2

c2 .
The flying astronaut sees the cities closer to
each other, i.e., the distance between them is
contracted. We speak of length contraction and
time dilation. This goes both ways: the length of
the spaceship is seen by you as smaller than by A.

Dynamics of the special
theory: E = mc2

These are the kinematic results. In addition
there are the even more interesting and impor-
tant dynamic aspects, the ones that deal with
mass, energy, and momentum, and that lead to
E = mc2.

We will quote some of the results for the
dynamic quantities, momentum, and energy,
that are also part of Einstein’s special theory of
relativity. The “relativistic momentum,” p, is no
longer mv, but is mv√

1− v2

c2

.

The most startling result is that the total
energy is E = mc2√

1− v2

c2

, of which mc2√
1− v2

c2

− mc2 is

the relativistic kinetic energy. The rest, mc2, is
called the rest energy.

We can derive a relation between energy
and momentum from these relations: from the
energy relation we have E

c2 = m√
1− v2

c2

, which,

from the momentum relation, is equal to p
v , so

that v
c = pc

E .

We can then write E2 = m2c4

1− v2

c2

as E2 =
m2c4

1− p2c2

E2

, and finally E2 − p2c2 = m2c4, or E2 =
p2c2 + m2c4.

Can we reconcile the expression for the rel-
ativistic kinetic energy with the Newtonian form
that we are used to? Let’s see how it changes
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when the velocity changes. We can write it as

K = mc2

⎛
⎜⎝ 1√

1 − v2

c2

− 1

⎞
⎟⎠ ,

or mc2[(1 − v2

c2 )−1 / 2 − 1].
We can expand the square-root part by using

the binomial theorem, in the form (1 + x)n =
1 + nx + · · · [This is the most useful part and
is sufficient here. The next terms are n(n−1)

2

and n(n−1)(n−2)
3! .] Here x = − v2

c2 and n = − 1
2 ,

so that (1 − v2

c2 )−1 / 2 becomes 1 + ( − 1
2 )( − v2

c2 ) =
1 + v2

2c2 , and the kinetic energy becomes mc2(1 +
v2

2c2 − 1), or 1
2 mv2! The next terms are succes-

sively smaller and smaller, and we see that as v2

c2

becomes smaller, the expression for the kinetic
energy gets closer and closer to the familiar
classical expression, 1

2 mv2.
Let’s look at E = mc2. It is a real equivalence

of mass and energy. If I heat an object and so
increase its internal energy, and then measure its
mass, I have every reason to expect that the mea-
surement will lead to a greater mass than when
it was cold. Of course the difference, equivalent
to the increase in the internal energy divided by
c2, is so small that there is no hope of actually
making the measurement.

It takes 13.6 eV to pull the electron away
from the proton in a hydrogen atom. Adding
this energy (the binding energy) is equivalent
to increasing the mass, so that once you have
separated the two particles you have that much
more mass. Since the mass of the hydrogen atom
(almost entirely that of the proton) is equivalent
to about 937 MeV, the change corresponds to
one part in 108, still very small.

In the nuclear realm the difference becomes
significant. Pulling the proton away from the
neutron in the deuteron, the simplest nucleus
consisting of more than one particle, takes about
2 MeV, or about 1 part in 1000.

d

np

Is there a process in which all of the mass
disappears? Yes, that can happen also. Let a

positron hit a material. It slows down as it makes
collisions, and eventually it comes to rest (or
nearly so) near an electron. The two annihilate.
Both disappear. That means they’re gone, com-
pletely and forever. What happens to the energy
that is equivalent to the mass that disappears? It
is now that of two photons, each with an energy
of about 1

2 MeV. The electron and the positron
are gone, but the energy equivalent to their mass
is still there as pure photon energy.

Small wonder that Einstein’s 1905 paper
“On the Electrodynamics of Moving Bodies” on
what came to be known as the special theory
of relativity was met with skepticism and even
with hostility. In spite of the strange and coun-
terintuitive conclusions, however, it became clear
as time went on that the theory was right, that
it described experiments and observations cor-
rectly, and that it necessitated a revolutionary
reappraisal of the concepts of time and space,
of mass and energy. Now, more than a hundred
years later, it has been so widely and completely
verified that it has become a cornerstone of sci-
ence without which many modern developments
are unthinkable.

In nuclear and particle physics the theory
plays a fundamental role. The relativistic rela-
tions are essential for the understanding, design,
and operation of particle accelerators such as
cyclotrons. Without a knowledge of the equiv-
alence of mass and energy there could be no
understanding of nuclear processes and transfor-
mations, including those in nuclear reactors and
the fusion reactions that light the stars. Among
applications that impinge directly on the experi-
ences of nonscientists are the Global Positioning
Systems that are able to provide remarkably pre-
cise information on location by signals from
earth satellites.

The theory is so much part of the fabric of
today’s science that it is often regarded as part
of “classical” physics, i.e., that part of physics
that is no longer questioned as to its correctness
within its realm of applicability.

Magnetism and electricity:
inseparable, but interchangeable

The fact that electricity and magnetism are
closely related was already known from the dis-
coveries of Oersted, Faraday, and others, but
our knowledge of that synthesis was enormously
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expanded by Maxwell when he combined them
in what came to be known as Maxwell’s equa-
tions, and showed how they cooperate in elec-
tromagnetic waves. Later, in 1905, a higher level
of understanding was achieved by Einstein. Even
as a student, Einstein was already on the path
that led to the theory of relativity when he tried
to imagine what would be observed by someone
riding at the crest of an electromagnetic wave.

We will look here at the much simpler ride,
moving along with the charges of a current. This
will allow us to see how the electric and magnetic
forces change, one into the other, depending on
the frame of reference in which they are observed.

Imagine two parallel lines with equally
spaced charges, at rest. The two lines repel, as
usual, as described by Coulomb’s law. Now look
at the same two lines from a frame of reference
that moves to the left, so that all the charges are
seen to move to the right, parallel to the two lines
of charge. The two lines are now currents, and
there is a magnetic force of attraction between
them.

v

F
e

F
e F

m

F
m

F
e

F
e

L

L 1–v2/c2

How can we reconcile this conclusion with
the expectation that the actual, observed, mea-
sured force cannot depend on the frame of refer-
ence? In Newtonian, classical physics there seems
to be no way out. It takes the theory of rela-
tivity to resolve the dilemma. It tells us that the
spacing between the charges is now changed. All

distances parallel to the direction of motion are
reduced by the Lorentz contraction. There are
now more charges in any given length along the
lines, and the electric force per meter is there-
fore greater. But the greater electric repulsion
between the charges, together with the magnetic
attraction between them, now that they are mov-
ing, add up to the same net force as before, when
there was only an electric force and the charges
were at rest.

We could also take the point of view that we
know the electric and magnetic forces. We could
then show that to get the same result, indepen-
dent of the frame of reference, there must be a
Lorentz contraction, and we can calculate how
large it has to be.

Alternatively, we can start from the Lorentz

contraction by the factor
√

1 − v2

c2 and calculate
how much larger the electric force becomes. This
gives us the magnitude of the attractive force
that is required so that the total force remains
unchanged. In other words if, somehow, we
already know that there is such a thing as the
Lorentz contraction, we can show that there
must be an additional force, an attractive force
between two lines of moving charges. This force
is, of course, the magnetic force, and it can
be seen to be a consequence of the existence
of the electric force together with the theory of
relativity.

There is an interesting feature of this story.
It is sometimes thought that the kinematic con-
sequences of the special theory of relativity are
observable only when the relative velocities are
close to the speed of light. This is not so in the
present example. Think of the electrons moving
in a copper wire carrying a current.They move
very fast, but their average velocity, called the
drift velocity, is of the order of a few cm/s or
even smaller for ordinary currents. This is the
relative velocity of the two frames of reference
that we have used. The phenomena of magnetism
arising from currents, including all the forces
between currents in wires and coils, are seen to
be the consequence of these very small relative
velocities.

As we reflect on the place of the theory of
relativity we can look back to the view of science
before it was developed. The great achievement
of Newton was to create classical mechanics, the
theory that seemed to structure all of physics,
all of science, and perhaps all of knowledge.
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Understanding a phenomenon meant to know its
mechanism, i.e., the way it comes about in accord
with Newton’s laws. When Newton’s laws came
in conflict with the more recently discovered laws
of electromagnetism, as demonstrated, for exam-
ple, by the Michelson–Morley experiment, it
was natural to look for flaws in the newer the-
ory. How astonishing then that it was Maxwell’s
synthesis of electricity and magnetism that was
given new meaning by the theory of relativity,
and that it was the electromagnetic equations
that survived unchanged. Newton’s mechanics,
on the other hand, and his views of time and
space, no longer hold their place as the bedrock
of science after Einstein’s fresh look and bold
reexamination.

11.8 Summary

A wave along a string or a water wave can be seen
to move fast and far, but the pieces of the string
and the parts of the water are only oscillating
in place. Although the string and the water do
not move very far, energy and momentum are
transported. One particle pushes on its neighbor,
and that’s how the wave propagates. Mechanical
waves also include sound waves, produced by the
oscillation of strings or vocal cords or columns
of air.

The propagation of electromagnetic waves is
more subtle. A changing electric field produces a
changing magnetic field, which in turn produces
a changing electric field. The disembodied fields
propagate even when there are no material bod-
ies. That’s how energy reaches us from the sun
through the empty space between.

Waves reach us when we hear or see, or
when we feel the warmth of the sun or the stove.

In a wave there is a quantity that oscillates
in space and in time. The motion repeats in space
after one wavelength (λ), and in time after one
period (T).

The frequency is the reciprocal of the period.
f = 1

T . The wave’s speed is v = λ
T = λf .

When two waves come together, their ampli-
tudes add. (They “interfere.”) They can produce
constructive interference or destructive interfer-
ence. Two waves are “in phase” when they move
up and down together. Their space dependence

has a difference in phase by an angle θ when one
varies as sin x and the other as sin(x − θ). The
sine function and the cosine function are out of
phase by π

2 radians.

The intensity of a wave (in watts/m2) is
the amount of energy transported per second
divided by the cross-sectional area through which
it passes.

The expression y = A sin( 2π
λ

x − 2π
T t) repre-

sents a wave.

The frequency of a wave is determined by
the vibration of its source. The speed of a
(mechanical) wave depends on the properties of
the medium through which it travels. The two
properties on which the speed depends are the
displaced mass and the restoring force.

A standing wave is produced by two trav-
eling waves in opposite directions. In a standing
wave there is an oscillation at each point but no
propagation. The amplitude varies (sinusoidally)
with distance.

On a string fixed at both ends, standing
waves are possible only with certain frequen-
cies and wavelengths, namely those for which
L = nλ

2 . At a fixed end there is a node. At a free
end there is (approximately) an antinode. The
frequencies corresponding to L = nλ

2 are the nat-
ural or resonant frequencies. In an air column
also, if the boundary conditions are the same at
both ends (closed or open), L = nλ

2 . If one end is
open and the other closed, L = λ

4 + nλ
2 .

Two notes whose frequencies differ by a fac-
tor of two are said to be an octave apart. The
octave interval is divided into smaller intervals
to produce a scale of notes.

When the source of a wave and the receiver
move with respect to each other, the frequency
observed by the receiver is changed. This is the
Doppler effect.

Maxwell showed that Ampere’s law is
incomplete when there is a break in a circuit. An
additional term (the displacement current) then
has to be added to the current. The displacement
current is proportional to dE

dt . There is now a
term similar to Faraday’s law, but with the rate of
change of the electric field instead of the magnetic
field. The two laws together lead to the existence
of electromagnetic waves.
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All electromagnetic waves have the same
speed, c, in a vacuum. They can have widely
different frequencies and wavelengths.

The energy density of an electric field is
1
2 ε0E2 J/m3. In a magnetic field it is B2

2μ0
.

In an electromagnetic wave electric and mag-
netic fields vary together (in phase with each
other). The fields are at right angles to each other
and to the direction of propagation.

In Young’s experiment light travels to two
slits, each of which acts as a source of light.
The light from the two slits combines at a screen
to form regions of light (constructive interfer-
ence) and darkness (destructive interference). In
a diffraction grating light from many slits recom-
bines. With a single slit light from different parts
of the opening leads to regions of constructive
and destructive interference.

Light reflected from the top and the bottom
of a thin film combines and gives rise to interfer-
ence effects, leading to the colors of soap and oil
films.

In the Michelson interferometer a light beam
is split into two parts that travel at right angles
to each other. The interference effects when they
recombine can be used for precision measure-
ments in terms of the wavelength of light. It
was also used in the Michelson–Morley experi-
ment to look for a difference in the speed of light
depending on its direction.

Light from the hot filament of an incandes-
cent light bulb is “incoherent.” It consists of
tiny randomly occurring flashes with different
wavelengths. Light from a laser is “coherent.”
It consists of waves of a single frequency and
wavelength, all in phase.

Law of reflection: the angle of incidence is
equal to the angle of reflection.

Law of refraction, or Snell’s law: n1 sin θ1 =
n2 sin θ2.

The image formed by a plane mirror is “vir-
tual.” No rays actually go to such an image or
come from it. When we look at the mirror, rays
seem to come from the virtual image.

Rays coming to a spherical mirror parallel
to the axis are reflected toward the focus. (This

is approximately so for a spherical mirror and
exactly so for a parabolic mirror.) Rays com-
ing through the focus are reflected parallel to the
axis. The distance from the mirror to the focus is
half the distance to the center of curvature of the
mirror.

A spherical mirror produces a real inverted
image if the object is further from the mirror than
the focus. For a closer object the image is virtual
and enlarged.

Thin lens: rays coming to a lens parallel to
the axis are refracted toward the focus. Rays
coming through the focus are refracted paral-
lel to the axis. Rays through the center continue
in a straight line. With these three rays we can
describe where an image is formed.

Thin-lens relation: 1
dO

+ 1
dI

= 1
f . For a vir-

tual image dI is negative, and for a diverging
(concave) lens f is negative.

Total internal reflection results when a light
ray is at the boundary to a medium with a smaller
index of refraction, and the angle of incidence
is so large that Snell’s law leads to an angle
of refraction greater than 90◦. (This occurs in
binoculars and in the filament of a fiber optic
cable.)

The lens of a camera produces an image on
a film or sensor. The lens of the eye produces
an image on the retina. Nearsightedness and far-
sightedness occur when the lens of the eye cannot
adapt sufficiently and the image is formed in front
of the retina or behind it.

To use a converging lens as a magnifying
glass, the object is between the lens and the focus,
so as to produce a virtual enlarged image. This is
also so for the eyepiece of a microscope or a tele-
scope. In both there is a second lens that forms a
real image of the object, which then is the object
looked at with the eyepiece.

The speed of light, c (in a vacuum), is
always the same. This assumption leads to length

contraction, L′ = L
√

1 − v2

c2 , and time dilation,

Δt′ = Δt√
1− v2

c2

.

Einstein’s special theory of relativity also
leads to E = mc2: the mass of an object corre-
sponds to an energy (the rest energy) equal to
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mc2. The rest energy of an object whose mass is
1 kg is 9 × 1016 J.

The relativistic momentum is mv√
1− v2

c2

. The

total energy is mc2√
1− v2

c2

and the kinetic energy is

the total energy minus the rest energy. When v is
much less than c, the kinetic energy mc2√

1− v2

c2

− mc2

approaches 1
2 mv2.

The binding energy of a system is the energy
required to separate it into its components.

11.9 Review activities
and problems

Guided review

1. Go to the PhET website and open the sim-
ulation Wave Interference. Select “Sound” and
“on.” Set a low frequency and a large amplitude.
Compare “Grayscale” and “Particles.”

(a) Select “Particles” and “show markers.”
Describe the motion of one of the particles with
a red x. You may want to use the “pause-step”
feature at the bottom of the screen.

(b) What is the relation between the direc-
tion of motion of the particles and the direction
of propagation of the wave? What is that relation
for a wave on a string?

(c) Click on “Show graph.” How is the pres-
sure related to the color of the “grayscale”? Click
on “Add Detector” twice. Set the two detectors
a half wavelength apart and watch the pressure
readings.

2. Go to the PhET website and open the simula-
tion Wave Interference. Select “Sound,” speaker
“on,” and “grayscale.”

(a) Increase and decrease the frequency and
observe what happens to the spacing of the rings.

(b) How does the wave speed vary?

3. Go to phet.colorado.edu and to Wave on a
String. Set “damping” to zero, “oscillate,” “no
end,” and check “rulers” and “timer.”

(a) Set the frequency at 35. Use the timer
to measure the period by measuring the time
for the wave to travel one wavelength. Use the
pause/play-step button. What is the frequency?
What is the ratio of the frequency setting to the

measured frequency? Measure the wavelength
and calculate the wave speed.

Repeat this for three other frequencies
between 25 and 65. What are your conclusions
about the wave speed and the frequency setting?

4. Go to the PhET website and open the sim-
ulation Wave Interference. Select “Sound” and
check “measuring tape” and “stopwatch.”

(a) Select five different frequencies. For each
of them pause and measure the wavelength. Mea-
sure the period with the timer. (Use the step
feature at the bottom of the screen.)

(b) Plot your data so as to determine the
wave speed. What do you need to plot so that
v is the slope? Look up the speed of sound in air
and in metals and compare them to your exper-
imental value. Is the sound traveling in a gas or
in a metal?

5. (a) Write an equation for a wave with a fre-
quency of 2 Hz, a wavelength of 30 m, and an
amplitude of 75 cm.

(b) Find the wave speed.

6. The equation for a certain wave is y = 15
cos (π

5 x − 40πt). What are the wavelength, fre-
quency, period, and wave speed?

7. Go to the PhET website and open the sim-
ulation Wave on a String. Set the tension to
its maximum and “damping” to zero. Select
“oscillate” and “fixed end.” Check “rulers” and
“timer.” Set the frequency to 50. Since this is a
resonant frequency, and so requires little energy
to keep it going, the amplitude of the oscillator
can be quite small. Set it at 1 or 2.

(a) Measure the wavelength by measuring
the distance between points with the same phase.
(Two successive points with the same phase are
a wavelength apart.) (Use “pause.”)

(b) Measure the frequency with the timer by
measuring the time for some number of cycles.
How does it compare to the frequency setting?

(c) What is the number of half-wavelength
segments equal to the length of the string? What
is the effect of the boundary condition at the
right-hand end?

(d) Calculate the wave velocity from your
measurements.

(e) Select “pulse.” (Increase the amplitude.)
Measure the wave speed with the timer and the
ruler. Compare it to the value of part (d).
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8. A string, 1.2 m long, is fixed at both ends. The
wave speed along the string is 220 m/s. What are
the three lowest frequencies of standing waves
that can be set up?

9. An organ pipe contains an air column 80 cm
long, open at one end and closed at the other.
What are the three lowest frequencies of standing
waves that can be set up in the air column?

10. Go to the Java Applet on the Doppler effect
as in Example 10, e.g. at http://lectureonline.cl
.msu.edu/∼mmp/applist/doppler/d.htm.

(a) Click on the gray rectangle to make
the blue dot (the source) appear. Pause the
pattern, and estimate the wavelength (the dis-
tance between successive circles).

(b) Drag an arrow with the mouse, repre-
senting a velocity less than the sound velocity, vs,
toward the bottom right corner. What would you
observe happening to the wavelength, frequency,
and wave speed, standing at the upper left cor-
ner? What would you hear there, compared to
the sound from the stationary source?

11. Go to the website phet.colorado.edu and
open Wave Interference. Select “Light,” “show
screen,” “no barrier,” and “measuring tape.”

Pause and measure the wavelength with the
tape. Leave the tape in place and change the color
using the wavelength slider. Measure the wave-
length again with the tape. Measure the wave-
length at the two ends of the spectrum. What
are the approximate limits of the wavelength of
visible light?

12. A concave mirror has a focal length of 20 cm.
(a) What is its radius of curvature?
(b) At what distance from the mirror must an

object and an image be so that the magnification
is 1?

(c) Where is the image for an object distance
of 15 cm? What kind of image is it?

(d) For what range of object distances is the
image larger than the object? For what part of
this range is the image real and for what part is
it virtual?

13. Go to the PhET website and open Geomet-
ric Optics. Select “principal rays,” “curvature
0.8,” “refractive index 1.87,” “diameter 0.3,”
and “virtual image.”

(a) Check “ruler” and use it to measure the
focal distance.

(b) Select an object distance larger than the
focal length and measure it. Measure the image
distance.

(c) Calculate the image distance from the
object distance with the thin-lens equation and
compare the result with your measurement.

(d) Measure the magnification. Calculate the
magnification and compare the result with your
measurement.

(e) Move the object until the magnification
is one. What are the object and image distances?
What is their relation to the focal length?

(f) Use the thin-lens formula to find the
answers to part (e) and compare them to the
results of your measurement.

14. Go to phet.colorado.edu and open Geomet-
ric Optics, “curvature 0.8,” “refractive index
1.87,” “diameter 0.3,” and “virtual image.”

(a) Use the ruler to measure the focal dis-
tance.

(b) Select an object distance smaller than the
focal length and measure it. Measure the image
distance.

(c) Calculate the image distance from the
object distance with the thin-lens equation and
compare the result with your measurement.

(d) Measure the magnification. Calculate the
magnification and compare the result with your
measurement.

15. You are swimming in a quiet lake. You put
your head under water and look up. What do
you see?

16. What is the constraint on the index of refrac-
tion of the prism to produce the reversal of the
path described in Example 16.

Problems and reasoning
skill building

1. A wave travels along a long (assume infi-
nite) rope under constant tension. The rope is
marked off in 1 m intervals. At the 0 m mark the
rope is observed to reach its maximum transverse
displacement every 8 s. The distance between
maxima at any instant is 25 m. Write a function
that describes this wave, assuming that it has its
maximum displacement at x = 0, t = 0.

2. A sinusoidal wave can be described by its fre-
quency, speed, and wavelength. Which of these
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quantities depends on the medium which on the
source, and which on both?

3. You have a rope that is 4 m long. You move
one end up and down to create a standing wave.
What are some possible wavelengths of standing
waves

(a) when the other end is fixed
(b) when the other end is free to move.

4. A plastic coating (n = 1.4) is used to reduce
the amount of light reflected from a lens whose
index of refraction is 1.5. What is the thickness
required to cause destructive interference of light
in the middle of the spectrum (λ = 550 nm)?

5. (a) A traveling wave is described by y(x, t) =
0.2 sin(πt − π

2 x). What are the five physical
quantities that you can determine from this rela-
tion and what are their values?

(b) Make a graph of y(x, 0).
(c) Make a graph of y(t) at x 2 m.
(d) Which of your graphs is a snapshot of

the wave? What is the other graph?

6. John is shaving, using a concave mirror 20 cm
in front of him. The virtual image is 60 cm from
the mirror.

(a) What is the mirror’s focal length?
(b) What is the magnification?

7. A lightbulb emitting light in all directions is
3 m below the surface of a lake. What is the
shape and size of the illuminated area as seen
from above?

8. Light of wavelength 550 nm passes through
a single slit. Find the angle to the first intensity
minimum for the following two slit widths:

(a) 2 × 10−4 m
(b) 2 × 10−6 m
(c) Explain how you knew right away that

one of the angles was going to be so much larger
for one of the answers.

9. Two sound sources are 3 m apart and emit
waves in phase. A detector is on a line perpendic-
ular to the line joining the sources, and directly
in front of one of them, 4 m away. The speed of
sound is 340 m/s.

What are the two lowest frequencies that
lead to destructive interference at the detector?

10. Look at the diagram of the Michelson inter-
ferometer. The source emits yellow light with
wavelength 620 nm. You look at the pattern

(as shown by the eye in the figure) and see a
bright yellow spot in the middle. Mirror 2 is
now moved until the bright spot is replaced by a
dark spot. Through what distance has the mirror
moved?

11. A concave mirror projects the image of a
slide on a wall. Its focal length is 30 cm. The slide
is 35 cm from the mirror.

(a) How far from the wall should the mirror
be?

(b) What is the magnification?
(c) For the image to be right-side up, what

should the orientation of the slide be?

12. A standing wave on a 0.8 m string is des-
cribed by the relation y = 0.02 sin 5πx cos 100πt
SI units.

(a) What are the amplitude, frequency, and
wavelength?

(b) Draw the standing wave pattern. Which
harmonic is this? (Counting the lowest frequency
as 1, what is the number of this one?)

(c) The mass of the string is 0.008 kg. What
is the tension in the string?

13. Three successive resonance frequencies of an
air column are 75, 125, and 175 Hz.

(a) Does this column have one end open and
one end closed, or both ends open?

(b) What is the fundamental (lowest) fre-
quency?

(c) Draw the wave pattern for the 75 Hz
wave.

14. You are holding a 1.6 m solid brass bar by a
clamp at its middle. You strike the bar so that it
resonates with its longest wavelength.

(a) Draw the standing wave pattern.
(b) The frequency is 1000 Hz. Describe what

would have to be different for the frequency to
be 2000 Hz.

(c) Determine the speed of sound in the brass
bar.

15. For a demonstration of standing waves a
string with length 2.5 m is attached to an oscil-
lator operating at 60 Hz. The other end of the
string passes over a pulley to a hanger where var-
ious masses can be attached to vary the tension in
the string. Transverse standing waves are set up
in the string with nodes at the pulley and at the
oscillator. The mass per unit length of the string
is 8 g/m.
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(a) What must the tension be for the string
to vibrate with its lowest frequency?

(b) What tensions are needed for the three
next higher frequencies?

16. Yellow light with λ = 620 nm enters an oil
film at right angles. The index of refraction of the
film is 1.3.

(a) What is the wavelength in the film?
(b) What is the thickness for destructive

interference?

17. A spaceship travels away from the earth for
10 days at a speed of 8000 m/s with respect to the
earth as measured from earth. What is the differ-
ence between that time and the time measured by
the astronaut in the spaceship?

Since the difference is small, it is not use-
ful to calculate each time interval separately and
then take the difference. Instead use the first
two terms of the binomial series in the form
(1 + x)n = 1 + nx + · · · (valid when x is much
smaller than 1.) For example, with x = − v2

c2 and

n = 1
2 , (1 − v2

c2 )
1
2 = 1 − 1

2
v2

c2 .

Multiple choice questions

1. Which of the following is not a kind of
electromagnetic radiation?

(a) gamma rays
(b) x-rays
(c) ultraviolet rays
(d) electrons
(e) microwaves

2. A tube is closed at one end and open at
the other. It is placed in front of a loud-
speaker that is playing the sound generated by
a variable frequency audio oscillator. The fre-
quency is slowly increased from 0. The first
frequency at which standing waves are gener-
ated is 325 Hz and the next is 975 Hz. The speed
of sound is 340 m/s. What is the length of the
tube?

(a) 20 cm
(b) 30 cm
(c) 40 cm
(d) 50 cm
(e) 10 cm

3. A 0.40 m string is clamped at both ends. The
lowest frequency for a standing wave is 325 Hz.
What is the wave speed?

(a) 340 m/s
(b) 260 m/s
(c) 813 m/s
(d) 130 m/s
(e) 406 m/s

4. Ocean waves with a wavelength of 120 m are
arriving at the rate of 8 per minute. What is their
speed?

(a) 8.0 m/s
(b) 16 m/s
(c) 24 m/s
(d) 30 m/s
(e) 4.0 m/s

5. A stretched string, fixed at both ends, is ob-
served to vibrate in three equal segments when it
is driven by a 480 Hz oscillator. What is the fun-
damental (lowest) frequency of standing waves
for this string?

(a) 480 Hz
(b) 320 Hz
(c) 160 Hz
(d) 640 Hz
(e) 240 Hz

6. A 2 m string, fixed at both ends, is observed to
vibrate as a standing wave in six segments. The
wave speed is 45 m/s. What is the frequency?

(a) 270 Hz
(b) 140 Hz
(c) 200 Hz
(d) 68 Hz
(e) 34 Hz

7. An organ pipe, open at both ends, has succes-
sive resonances at 150 Hz and 200 Hz when the
velocity of sound in air is 345 m/s. What is its
length?

(a) 5.25 m
(b) 5.75 m
(c) 2.76 m
(d) 4.90 m
(e) 3.45 m

8. A wave is described by the relation y =
0.15 sin(π

8 x − 4πt) SI units. What is the first
positive value of x where y is a maximum at
t = 0.

(a) 16 m
(b) 8 m
(c) 13 m
(d) 2 m
(e) 4 m
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9. A standing wave on a string is described by
y = 0.080 sin 6x cos 600t SI units. What is the
distance between successive nodes?

(a) 0.24 m
(b) 0.08 m
(c) 0.02 m
(d) 0.52 m
(e) There is insufficient information.

10. Assume that the human vocal tract can be
thought of as a tube open at one end. Assume
that the length of the tube is 17 cm and that the
speed of sound is 340 m/s. What are the lowest
two resonant frequencies?

(a) 500 Hz, 1500 Hz
(b) 500 Hz, 1000 Hz
(c) 1000 Hz, 2000 Hz
(d) 1000 Hz, 3000 Hz
(e) 1500 Hz, 2500 Hz

11. Sound travels at 340 m/s in air and at
1500 m/s in water. A sound of 256 Hz is made
in water. If the 256 Hz sound is made in air,
which of the following is true:

(a) The frequency remains the same and the
wavelength is shorter.

(b) The frequency remains the same and the
wavelength is longer.

(c) The frequency is lower and the wave-
length is longer.

(d) The frequency is higher and the wave-
length stays the same.

(e) Both the frequency and the wavelength
remain the same.

12. Two strings, fixed at both ends, are 1 m and
2 m long, respectively. Which of the following
sets of wavelengths, in m, can represent waves
on both strings?

(a) 0.8, 0.67, 0.5
(b) 1.33, 1.0, 0.5
(c) 2.0, 1.0, 0.5
(d) 2.0, 1.33, 1.0
(e) 4.0, 2.0, 1.0

13. A string, 4 m long, vibrates according to the
relation y = 0.04 sin(πx) cos(2πt) SI units. The
number of nodes is

(a) 1
(b) 2
(c) 3
(d) 4
(e) 5

Synthesis problems and projects

1. Go to the PhET website and open the simula-
tion Fourier: Making Waves.

Go to “discrete.” The first row shows the
amplitudes of the first 11 harmonics (f, 2f,
3f, . . . 11f). Each can be dragged up or down.
The decomposition of a complex wave into its
components is called Fourier analysis, and their
addition is Fourier synthesis. The components
are called Fourier components.

The second row shows the separate waves
coresponding to the selection you make in row 1.
Start by experimenting with just one component
and its amplitude at a time.

The third row shows the sum of the waves
that are shown in the second row.

(a) Start with A1 = 1 and A10 = 0.3 to see
how two waves add when the frequencies are
quite far apart. Try other combinations.

(b) See how close you can come to a
“square wave” (up—straight across down—
straight across and up again) with just three
harmonics (A1, A3, A5). What are the ampli-
tudes? (Set A1 to 1, and then drag A3 up to its
best point for what you want to do. Then A5. Go
back to A3 and adjust it.) Select “Math form”
and “Expand sum” to see the equations of the
waves.

Select “function: square wave” to see what
can be done with 11 components. Compare
this with your selection: what kind of improve-
ment can you get when there are more com-
ponents?

(c) Select “function: wave packet.” This
shows a combination of waves that add up to
a pattern confined to a narrow region in space.
You can change the x and y amplitudes with
the buttons to the right of the graphs. You
can see a better wave packet when you choose
“discrete to continuous.” Start with k1 = π

4 ,
k0 = 12π, and σk = 2π. Experiment with others
values.

(d) Go to “wave game.” It asks you to match
a given wave by selecting the components. Start
with level 1 (very easy) and go on to level 4.
Continue as far as you can.

2. You have some string and you want to know
how fast a pulse or wave travels along the string.
You have a pulley, a meter stick, a scale, some
masses, and a hanger for the masses.
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What can you do with this equipment to pre-
dict the speed of a pulse or wave on the string?
List any assumptions that you make.

What additional equipment do you need to
test your prediction?

3. Parallel rays to a lens with spherical surfaces
do not come together exactly at a focus. This is
called “spherical aberration.” The aperture of a
camera is an opening with variable diameter in
a disk to limit the part of the lens that is used.
In general, a sharper image is produced when the
aperture is small because spherical aberration is
then smaller. However, the smaller the aperture
the greater are the diffraction effects.

An aperture has a diameter of 1 mm. The
film is 5 cm from the lens. What is the distance
from the central maximum of the diffraction
pattern to the first minimum? Use λ = 500 nm.

The distance to the first minimum produced
by a point object characterizes the resolution of

the lens. A second image at this distance from the
center can just barely be seen separately on the
film or screen. The limit imposed by diffraction
effects can be overcome by using radiation with
a smaller wavelength. This is done, for example,
in an electron microscope.

4. Calculate the electric and magnetic forces for
the two lines of charge near the end of Section
11.7 to show that the forces in the stationary and
the moving systems are the same.

5.

5o

Light enters a 45◦ prism made of glass with
an index of refraction of 1.50 at an angle 5◦
below the horizontal. Describe the subsequent
path: draw a ray diagram.


