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While it is never safe to affirm that the future of Physical Science has no marvels
in store even more astonishing than those of the past, it seems probable that
most of the grand underlying principles have been firmly established and that
future advances are to be sought chiefly in the rigorous application of these
principles to all the phenomena which come under our notice.

It is here that the science of measurement shows its importance—where
quantitative results are more to be desired than qualitative work. An eminent
physicist has remarked that the future truths of Physical Science are to be
looked for in the sixth place of decimals.

—Albert Abraham Michelson
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How ironic that it was Michelson who said this. He thought of himself as a pillar of
classical physics, devoting his life to measuring the speed of light more and more
accurately. Yet the Michelson-Morley experiment showed that light behaves in
a completely unexpected way. It was a signpost on the way, an indication, as
seen from our present vantage point, that our understanding of the natural world
would be fundamentally different in the future.

There were others. X-rays were discovered by Roentgen in 1895. Today we
know that they are electromagnetic waves emitted by atoms or by accelerated
charges. Radioactivity was discovered in 1896 by Becquerel. Radioactive emis-
sions come from the nuclei of atoms, but the existence of nuclei was not even
suspected at that time. In 1897 J. J. Thomson found that the constituents of a
beam of what we now call electrons always have the same ratio of charge to
mass, and hence he is usually credited with the discovery of the electron.

In the first part of the twentieth century there were further discoveries in
atomic and nuclear physics, one piled on the other. Some of the experiments
seemed to contradict well-established knowledge.This was especially true for the
observations that showed light to have the seemingly irreconcilable properties of
both waves and particles. Attempts to eliminate the difficulties had only limited
success. New insights and understanding came, sometimes slowly, sometimes
quickly, but the first quarter of the century is now seen as a time of transition.

The resolution came in 1925, with the development of quantum mechanics
and its synthesis of the wave and particle aspects, not only of light and other

electromagnetic radiation, but also of matter and all of its constituents.

12.1 The “old” quantum physics

The year 1900 saw the discovery that would
later be seen as leading to the most profound
and influential changes in our view of nature.
Like the Michelson-Morley experiment it was
not just new, but showed that what was thought
before was fundamentally flawed. It took years
for the implications of the new idea to be under-
stood and to become part of the mainstream of
science.

As was true for Michelson, Max Planck saw
himself as firmly rooted in the past, and believed
that he was just applying Maxwell’s work to a
different situation. He tried to look at the details
of the electromagnetic radiation emitted by hot
bodies, such as a red-hot stove, the white-hot
wire in a light bulb, or the sun. Experiments had
shown that the radiation and its distribution of
wavelengths are closely the same at any given
temperature, regardless of the nature of the hot
material.

He succeeded in developing a formula that
describes the way the intensity of the radiation is
distributed among the different wavelengths, in
other words, the spectrum of the radiation. There

was, however, a totally unexpected feature. The
formula seemed to imply that the particles that
make up a hot body, and whose vibrations lead
to the emission of the radiation, cannot vibrate
with just any frequency, but only with a dis-
crete set of definite, equally spaced frequencies,
each of which corresponds to a definite, dis-
crete energy of the vibrating system. There was
a lowest frequency, f. All other possible fre-
quencies were multiples of it, Nf. Each was
proportional to the corresponding energy of the
vibrating body: E o« Nf, where N is a whole
number. The proportionality constant is given
the symbol A, so that E = NAf. b is a constant
of nature and it came to be known as Planck’s
constant.

E = Nhf

The idea that only certain frequencies, and
therefore only certain energies are possible is
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called the quantization of energy. It was so at
variance with anything that had been previously
thought of that no one quite knew whether and
how to take it seriously. Einstein, five years later,
was the first to take the result to the next logi-
cal step. If the emitting material can have only
certain definite energies, then in keeping with
the law of conservation of energy, the emitted
radiation can also not have any arbitrary energy,
but must consist of definite amounts (quanta)
of energy. Einstein introduced the idea of this
definite amount, or quantum, of electromagnetic
energy, later called a photon. Its energy is bf,
where this time f is the frequency of the radiation
and b is Planck’s constant.

The new concept of the photon made it
possible to understand the until then mysteri-
ous photoelectric effect. This is the emission of
electrons from a material that is illuminated by
electromagnetic radiation, and it had until then
been quite incomprehensible. Einstein showed
that the energy of each photon of the radiation
(bf) is given to the electron as kinetic energy,
except for the amount of energy that is neces-
sary to liberate the electron from the material of
which it initially forms a part.

Succeeding years brought further seemingly
compelling evidence that a beam of light or other
electromagnetic radiation consists of photons,
particles with energy hf and momentum hc—f

It was clear that the experimental evidence
for the existence of photons was revolutionary.
It was quite unclear how it could be recon-
ciled with the electromagnetic theory, which
was firmly supported by other experiments that
demonstrated clearly that light was propagated
as waves.

The photoelectric effect

When doors open automatically as we come
near, or when an alarm is set off when we cross
a certain line, it probably happens because a
light beam shining on a photocell is interrupted.
The light shines on a piece of metal in the pho-
tocell and causes electrons to be emitted from
the metal. This is called the photoelectric effect,
and it has been known since the late nineteenth
century.

At that time it was confidently expected
that like other electric phenomena it would be
explained by the electromagnetic theory, which

had shown light to be electromagnetic waves.
The general features of an explanation seemed
clear. An electromagnetic wave has an oscillating
electric field. As the wave hits a metal, the elec-
trons in the metal find themselves in this field,
and experience an oscillating force. We would
expect that if this force is strong enough it can
shake some electrons loose, and so explain how
the photoelectric effect comes about.

Experiments, however, turned up puzzles
and discrepancies. The first is that the effect
depends on the color of the light. When the fre-
quency is too small (the wavelength too large), no
electrons are liberated, regardless of how much
light there is.

The second puzzle concerns the energy of the
electrons. It is measured by examining how large
a voltage is required to stop the electrons. This is
like measuring the kinetic energy of a marble by
seeing how high a hill it can climb before it stops.
The expectation was that more light would lead
to a higher energy of the electrons. The results
showed, however, that for a given frequency (i.e.,
for a particular color) of light, the energy of the
electrons does not change, no matter what the
intensity of the light is. Only the number of emit-
ted electrons is affected. On the other hand, the
energy changes when the frequency of the light is
different.

These features can be seen in the two kinds
of graphs shown here. Each graph in the fig-
ure below shows the current of photoelectrons
for light of a given frequency. The upper curve
is for a greater light intensity. Here V is the
voltage between the metal that emits the photo-
electrons and an electrode close to it. When V is
negative on this graph, it tends to stop the emit-
ted electrons. Beyond some negative value of V

AN
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there is no current. This is the “stopping poten-
tial,” Vi, and it measures the electron energy.
When an electron is stopped in an electric field,
its kinetic energy is converted to electric poten-
tial energy. The charge of the electron times
the stopping potential is equal to this poten-
tial energy, and therefore it is also equal to the
kinetic energy that the electron has before it is
stopped.

We see that the magnitude of the current
is greater for the greater light intensity of the
upper curve, but the energy of the electrons, as
measured by the stopping potential, remains the
same.

The second graph shows the stopping poten-
tial as a function of the frequency of the
light. It is even more unexpected. Below a cer-
tain frequency no electrons are emitted, and for
higher frequencies the electron energy, as mea-
sured by the stopping potential, increases linearly
with frequency. With different metals the results
are similar, but with different minimum frequen-
cies. The consistent pattern of a “threshold”
necessary for electron emission was strange and
unexpected.

Eventually the puzzling features were
explained by Einstein in 1903, but at a startling
expense. The explanation did not use the electro-
magnetic theory. Instead Einstein used the con-
cept of quantized energy, so reluctantly invented
by Planck five years earlier. He said that the
emitted light consists of bundles of energy (the
photons) that behave like particles and not at all
like waves.

Planck had considered only the material that
emits the waves. To fit the experiments he had
been forced to the conclusion that only certain
energies were possible for the material as it emit-
ted the waves. He did not really seem to trust this
revolutionary discovery, and it was not carried
further in the next few years. Einstein realized

that if the emitting material could exist only with
certain energies, then the emitted light would
also have to exist in bundles of definite energy.
When the emitting material goes from one def-
inite energy to another, the light carries away
the difference in energy, and must also consist
of definite amounts or quanta of electromag-
netic energy, which were subsequently called
“photons.”

The explanation of the photoelectric effect
now becomes amazingly simple. Each photon
can liberate an electron. It takes a certain amount
of energy to do that, different for different
materials, depending on how strongly the elec-
trons are attached, or bound. The amount
of energy to free the electrons—their “binding
energy” Ep—is also the minimum energy that
a photon must have if an electron is to be emit-
ted. Any extra energy is given to the electron as
kinetic energy.

If the photon energy is bf, the kinetic energy
of the electron is K, and the smallest energy
that it takes to liberate the electron is Eg, then
hf = K+ Eg. This is the result for which Ein-
stein was awarded the Nobel Prize, but not until
17 years later. (For metals the smallest amount
of energy that will liberate electrons is called the
work function).

The equation was immediately successful.
It explained the photoelectric effect and estab-
lished the existence of photons. The question of
what happened to the wave theory, which was
supported by many experiments, and which had
seemed to be firmly established until that time,
was left unanswered.

Go to the PhET website and open the simulation
Photoelectric Effect.

You can vary the material of the target. You
can also vary three quantities with sliders: the light
intensity, the battery voltage, and the wavelength.

Choose sodium.

(a) Set the intensity at 35% and the wavelength
at about 150nm. Check “current vs battery
voltage.”

Vary the battery voltage with the slider on
the battery on both sides of zero and observe
the first graph, current against voltage. Com-
pare the graph to the corresponding graph
in the text. Why are the shapes somewhat
different there? Observe the electrons in each
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of the voltage regions. At what battery volt-
age does the current go to zero? This is the
"stopping potential.” What is the energy of the
photoelectrons?

Increase the intensity to 60%. What are
the stopping potential and the photoelectron
energy now?

(b) Check the boxes to see the other two graphs.
What do you see on the second graph as you
change the battery voltage? What do you see
on the third graph? Does it correspond to your
prediction?

(c) Uncheck the boxes for the second and third
graphs so that you see only the first. Set the
wavelength at about 300 nm. Again vary the
battery voltage. What are the stopping poten-
tial and the photoelectron energy? What is the
frequency of the light?

What do you expect for the graph of pho-
toelectron energy vs. light frequency? Turn on
the third graph vary the wavelength, and see
whether your prediction was correct.

(d)  Why is it that below a certain frequency there
are no photoelectrons? What is that frequency
for sodium? What quantity in the Einstein pho-
toelectric equation can you calculate from that
frequency? What is it, from your graphs, for
sodium?

(e) Put the intensity again at 35% and set V at 0.
Vary the wavelength and observe the third
graph, electron energy against frequency.

(f)  Choose zinc. Find its work function from the
graphs of the simulation.

EXAMPLE 1

In zinc the minimum amount of energy that it takes
to remove an electron is 4.3 eV.

(a) What minimum energy and frequency must a
photon have to produce a photoelectron?

(b) What is the wavelength of that photon?

(c) A photoelectron is produced by a photon that
has an energy twice the minimum. What is the
energy of the photoelectron?

Ans.:
(a) The minimum energy of the photon is 4.3 €V.
This energy is equal to hf. Planck’s constant,

b, is equal to 6.63 x 10734 Js. Before we can
use the relation E = hf, we have to convert
the value of the energy to SI units: E = (4.3)
(1.6 x1071%) =6.9x10"®]. Now we can

use f=E= % =1.04x 105" or
1.04 x 1015 Hz.
(b) h=¢= 2000 =29%107 m=290nm.

(c) If the photon energy is twice 4.3 eV, the energy
above 4.3 eV goes to the photoelectron. Here
this energy is 4.3 eV.

Bohr’s vision of the atom

The greatest triumph of the early quantum theory
came with Bohr’s model of the hydrogen atom in
1913. There had been an earlier atomic model
by J. J. Thomson that envisioned electrons stuck
in a ball of positive charge. This model could not
predict any of the observed atomic properties and

had to be abandoned.

+ +
+ 0 9,
O+ + + +
+G?+ + +9
+ +O+ A
Thomson Bohr

]

Bohr’s “planetary” model of electrons in
orbit around a nucleus gave a more realistic view
of atomic structure. It led to the correct allowed,
quantized, energies of the hydrogen atom and to
values of the atom’s size that are closely related
to what we know today. It also has the advan-
tage that it uses only some elementary mechanics
and Coulomb’s law.

The Bohr model is easy to visualize and is
relatively simple. As a result it has continued to
have a life far beyond the time in 1925 when
it was replaced by a model based on quantum
mechanics, the modern theory of matter, which
requires more complicated mathematical meth-
ods. The picture of electrons moving in circles or
ellipses about the nucleus is still widely used to
illustrate what atoms are like, in spite of the fact
that it is obsolete and even misleading.

It is therefore a legitimate question whether
there is any value in going into detail about the
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Bohr model. We will do so, briefly, because of its
historical importance and because it allows us to
introduce some important concepts.

We need not stay with Bohr’s original
sequence and terminology, and will use mod-
ern terms wherever possible. We will emphasize
which aspects are still regarded as correct and
which have to be discarded.

As we show where it falls short, we will be
able to introduce some of the features of today’s
quantum mechanics that are startlingly different,
but have proved themselves to be enormously
more powerful in their description and analysis
of atoms and their combinations.

Here are the basic ingredients of the Bohr
model of the atom.

1. The atom consists of a nucleus and electrons.

The existence of the nucleus was known

from the work of Rutherford. He bom-

barded atoms (in a gold foil) with radioac-

tive particles (alpha particles, which he later

showed to be helium nuclei). By analyzing

the way they bounced off, he showed that

almost all of the atom’s mass is concentrated

in a minute piece in its middle, the nucleus.

2. The only force acting between the nucleus

and the electrons is the electric force, as
described by Coulomb’s law.

The gravitational force is too weak,
and the nuclear forces, which were then
unknown, act only over much smaller dis-
tances. The realization that the electric force
is the only force that acts between the
nucleus and the electrons (as well as between
atoms), and that it has precisely the same
form there as in the macroscopic domain, is
still fundamental to all our understanding of
atomic phenomena.

3. The atom can exist only in states with certain
total energies or “energy levels.”

This is as in Planck’s original hypothe-
sis. The allowed energies can be described
in an energy level diagram. Each allowed

energy is represented by a horizontal line.
The lines are spaced along a vertical scale
that is proportional to the energy.

4. The atom can make transitions between
energy levels with the emission or absorption
of energy.

One way it can do this is by the emis-
sion or absorption of a photon, a quantum
of electromagnetic energy, hf, equal to the
energy difference between the levels before
and after the emission or absorption, so that
energy is conserved. The emitted photon has
exactly the energy equal to the energy dif-
ference between the initial and final energy
levels. Similarly, a photon is absorbed only
if its energy is exactly equal to the energy
difference between the initial and some final
level. If there is no such level the photon is
not absorbed, i.e., a collection of such atoms
is transparent to photons of that frequency
and energy.

Each of these statements remains as valid
today as it was when Bohr used them in 1913.
Bohr, however, imagined definite mechanical
orbits for the electrons. Today we know that
there are no circular or other geometric orbits,
and that we can only determine the probability
of finding the electron in a particular region or at
some particular distance from the nucleus.

Now we come to the actual calculation of the
energy levels for the simplest atom, that of hydro-
gen. According to Bohr’s initial model its single
electron moves in a circle around the proton at
its center.

Bohr knew that there was a problem with
the orbits. An electron moving in a circle is ac-
celerated (with the centripetal acceleration %),
and Maxwell’s theory shows that an acceler-
ated charge radiates, and so loses energy. This
happens, for instance, in modern synchrotrons,
where electrons race around a circular track, and
which are used as sources of intense electromag-
netic radiation. Bohr simply said (“postulated”)
that this doesn’t happen in atoms, and that the
energy remains constant as long as an electron
moves in one of the orbits allowed to it.

This was his major contribution, together
with the prescription for finding the allowed
orbits, or, as we would prefer to say today, the
allowed energy levels. He did this by making
a further postulate, known as the quantization
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condition, that said that the angular momentum
of the electron (mvr) could only be a multiple of
Planck’s constant divided by 27, i.e., %, today
written as h (pronounced “h-bar”). In other
words, mvr = nh, where the quantum number,
n, can take on the values 1, 2, 3, and so on, up
to infinity.

He tried to justify this choice, but the major
justification came from the fact that the quan-
tization condition could be used, together with
Coulomb’s law, to calculate the allowed energy
levels, and that they came out correctly, i.e., in
accord with the experimentally observed radia-
tion from hydrogen.

Here is the result: the allowed energies of
the hydrogen atom are described by the formula
E, = %, where E1 = —13.6eV. The negative
sign follows from the choice of the reference level
as E = 0 when the electron and the nucleus are
far apart, i.e., when % = 0. When the hydrogen
atom is in one of the allowed, stable states, energy
needs to be given to it to bring it to this reference
level. In other words, its energy needs to be raised
to bring it to zero. All the allowed energies are
therefore negative.

Each value of the quantum number, n, corre-
sponds to one of the allowed values of the energy.
For n = 2, the energy is +% eV, or —3.4¢V,
and so on. The radius of the atom is #%r;, where
71, the radius of the atom when it is in its lowest
(ground-state) energy level, is 0.53 x 10~1%m or
0.053nm. (A unit that is often used for atomic
distances is the Angstrom, equal to 10~10m,
so that the ground-state radius of the hydrogen
atom according to Bohr is 0.53 A.)

As n increases, and the energy gets closer to
zero, the radius becomes larger. When 7 goes to
infinity, r also goes to infinity, and the electron
and the proton are completely separated.

Bohr’s assumption of circular electron or-
bits was wrong. His method of calculating the
energies was wrong. The values of angular mo-
menta of his quantization condition turned out
to be wrong. But the notion of energy levels is
correct, and he got the right values for them for
the hydrogen atom. His model also led to val-
ues for the radii of the orbits, and so to the
atomic size. The picture of atoms with exact
radii later had to be abandoned and replaced
by the statements of quantum mechanics, which
allow us to say only what the probability is of
finding the electron at a given distance from the
nucleus. The probabilities turned out to have
maxima at or close to the Bohr orbits, so that the
model was basically successful in describing the
atomic size.

The successes were so impressive that it was
difficult to doubt that Bohr had shown the correct
path. Over the next decade attempts were made
by Bohr and others to extend the model to atoms
with more than one electron and to describe other
atomic properties. Success seemed tantalizingly
close, but more and more assumptions had to be
made, and it proved more and more difficult to
find agreement between theory and observation.
It was eventually realized that radically new ideas
were required, and they came, starting in 1924,
in a torrent of activity and creativity, and with
astonishing success.

Bobr’s calculation

Here is the Bohr model calculation for the energy
levels and the radii of the hydrogen atom.
Bohr’s electron moves in a circle, so that
there must be a force on it toward the center
(a centripetal force) equal to '”7”2 In this case

the force is the electric force of attraction to the

n E
i 0
6 B X 157ey0.85 ey —0.54 eV -0.38eV
-3.4eV
1 -13.6eV
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2 . .
proton, ]%, where e is the magnitude of the

charge on the electron or the proton.

The first equation is therefore

. ) 2
which we can rewrite as v2 = %

The second equation is the quantization con-
dition, which says that the angular momentum of
the atom is a multiple of h:

muvr = nh

— nh
so that v = 70, ' '
We can square it and set the two relations
for v? equal to each other, to get
ke*  n?h?

mr — m2r?
which we can solve for 7, to get

)
kme?

r=mn

For radius is 7 =

which is 0.53 x

n=1, the
(1.055x1034)2
(9x109)(0.91x10-30)(1.6x10-19)2>

10~ m or 0.53 A.

The other radii are r,, = #%r, four times as
large for n = 2, nine times as large for » = 3, and
so on for other values of 7.

Now we can find the energies. Instead of
calculating the kinetic energy and the potential
energy separately, we see that the Coulomb’s law
relation can also be written % = mv?, where the
left side is the negative of the potential energy
and the right side is twice the kinetic energy, 2K.
We will follow the established practice and call

the potential energy U in the rest of this chapter

so that —U = 2K. The total energy is E = U+ K
or U—%,sothatE = % or _ffz.

With our earlier value for 7 this is equal to

ke kme*

E=-——
2 n?n?

or
1 k2met
n? 2h?

For 7 =1 this is ~(9x10%)2(0.91x10-30)(1.6x 10~ 19)4 J
(2)(1.055x10—3%)

or —13.6 €V. The other energies can be written as
E, = (niz)El, so that they are —% forn =2,

—% forn =3, and so on, upto E=0 as n
approaches infinity.

The lowest state (7 = 1) is the ground state.
The others are the excited states. The atom will,
unless something prevents it from doing so, go
to the lowest state that is available to it. As it
goes to a lower state it gives up the difference
in the energy. One way to do this is to emit a
photon. Let’s look at a transition from the state
n =3 to the state # =2. The energies of the

excited states are % = —-3.4¢V for n =2 and

% = —1.51eV for n= 3. The photon energy
is %‘ —E o —1.51eV—(=3.4eV), which is
about 1.9eV. We can also calculate the corre-
sponding frequency and wavelength from the fact
that the photon energy is b/ and the wavelength
is % (Just remember that you have to pay atten-
tion to the system of units: in the SI system
you first have to change from eV to joules, and
the wavelength then comes out in meters. The
frequency is in hertz [Hz], where 1 Hz is one
vibration per second.)

As n increases, and the energy gets closer
to zero, the radius (n%ry) gets larger. When 7
and r go to infinity, the electron and the proton
are completely separated, and both the kinetic
energy and the potential energy go to zero.

Our choice for the reference level leads to
the fact that when the electron is closer to the
nucleus, so that its potential energy is smaller
than at the reference level, both the potential
energy and the total energy are then negative.

To take the atom from its ground state to the
state where the electron and proton are infinitely
far from each other, we have to give it 13.6 eV.
This, the energy to destroy the atom, is also called
its binding energy.
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To remove the electron is called to ionize the
atom. The hydrogen atom’s ionization energy is
therefore also 13.6eV.

EXAMPLE 2

(a) What is the total energy and what are the poten-
tial and kinetic energies of a hydrogen atom in
the state with 7 = 4?

(b) What are the energy, frequency, and wavelength
of the light emitted by a hydrogen atom in the
transition from the state with 7z = 4 to the state
with n = 2?

(a) For n =4 the energy is —% =—0.85¢eV. The
potential energy is twice as large and the kinetic

energy is 0.85eV.

(b) Theenergyis AE = E4 — E; = —0.85 — (—3.40)
=2.55¢V.

The frequency is ATE. In SI units the energy

is (2.55)(1.6 x 1072 ]) =4.08 x 10717 ], and

[=AF = 2081070 — 615% 10" Hz. The
Wavelengthis]% = % =488x107"m=

488 nm(=4880A).

Suddenly, photons everywbhere

The Bohr model’s success confirmed the exis-
tence of the photons that Einstein had introduced
when he explained the photoelectric effect. We
have already discussed the photoelectric effect:
the photon hits a material and gives all of its
energy to an electron. Part of the energy is used
to liberate the electron, i.e., to overcome its bind-
ing energy. Whatever is left over is given to the
electron as kinetic energy.

hf = K+ Ep

where the left side is the photon energy and the
right side is the kinetic energy, K, of the electron
plus its binding energy. (The binding energy, Ep,
is the energy needed to separate the electron from

the material of which it is originally a part.) This
is Einstein’s photoelectric equation. In the initial
experiments the electrons were ejected from met-
als in which the binding energy of the electrons
that are released is typically of the order of a
few eV.

The Compton effect

A second interaction between a photon and an
electron is the Compton effect. This time the pho-
ton gives only part of its energy to an electron and
gives the rest to a new photon. The energies are
related by

bf = bf +K.

where bf is the energy of the original photon, f’
is the frequency of the new photon, which is also
called the recoil photon, and K. is the electron’s
kinetic energy.

This experiment was done with x-rays with
frequencies two or three orders of magnitude
greater than those of visible light. The photon
energies are therefore also greater (of the order
of keV), and the electron’s binding energy is so
small by comparison that it is usually neglected.
The Compton effect can therefore be analyzed
as a collision between a photon and an elec-
tron in which both energy and momentum are
conserved.

The result is a relation between the wave-
length, ., of the original photon and the wave-
length, %/, of the new photon. Their difference is

b (1 —cos 0)
Mec

N—h=Ar=

This result, the Compton effect equation, is
startling and incomprehensible to anyone who
expects the radiation to follow Maxwell’s elec-
tromagnetic theory. The photon collides with an
electron and its energy changes. Its frequency
and wavelength change. It is as if a beam of
blue light were suddenly to turn red. Once again
we are confronted with the particle properties of
photons.
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EXAMPLE 3

In the Compton effect the most probable angle for
the recoil photon is 180°. What is the energy of the

Compton electron for this angle when the energy

of the original photon is equal to Eg = m.c* =

0.51 MeV, the rest energy of an electron?

Ans.:

For 6 = 180°, cos 6 = —1, and (1 —cos 0) = 2.
N= & = hc _ he
F=H=E
The Compton equation for this angle can now
be written as
he _ be _ 2b 1 1_ 2

ETE = mc " FTET E"
/ o1 1, 2
We can solve for E' by writing F=EtE =

2E+Eg
EEqy

so that

y _  EEy

E = 557k

For E = Eo, E'i lto L0 = 1F
or . = £, 1S equa tOm—g 0-

The energy of the electron is E — E’; which is
2Eg
5

For all other angles the electron energy is less. It
ranges from zero to %Eo.

For higher photon energies the ratio of the elec-
tron energy to the photon energy (which here is %) is

closer to one.

Pair production and annihilation

If a photon has still larger energy, of the order
of MeV, it can create an electron—positron pair.
(The positron is like an electron, but positively
charged.) This time the particles are not just
knocked out of a material or given some momen-
tum in a collision. They are not there at all to
start with, and are created in the process that is
called pair production. The creation uses up an
energy equal to the rest energy of the two parti-
cles, which is 1.02 MeV, which is therefore the
minimum energy that a photon must have if this
process is to occur. If the photon has additional
energy it is given to the two particles as kinetic
energy.

hf et

e+

The photoelectric effect, the Compton
effect, and pair production are three processes

that are initiated by photons. There are also pro-
cesses that go in the other direction, initiated
by electrons and resulting in photons. One is
pair annibilation. If an electron and a positron
find themselves near each other, they will annibi-
late, i.e., they will both disappear, and give their
energy to two photons.

This usually happens when a positron (for
example, after being emitted by a radioactive
substance) slows down and comes approxima-
tely to rest near an electron. The momentum of
the two particles at rest is zero, and that is why
a single photon cannot be created. It takes two
photons, moving off in opposite directions, to
satisfy the law of conservation of momentum.

EXAMPLE 4

Most detectors and counters of high-energy photons
do not detect or count the photons directly. Instead
they count the electrons emitted through one of the
photon-electron interactions.

A photon has an energy of 2 MeV. What are the
three processes by which this photon can lose energy
with the emission of one or more electrons? What is
the range of energies of the resulting electrons in each
case?

Ans.:

The three processes are the photoelectric effect, the
Compton effect, and pair production. In the photo-
electric effect the photon loses all of its energy. A few
eV are used to liberate the electron, but most of the
2 MeV go to the photon.

In the Compton effect part of the energy goes
to the electron and part goes to the recoil photon.
The Compton-effect equation shows that the largest
difference between the initial photon and the recoil
photon occurs when the angle between them is 180°.
This, then, is the angle between them for which
the electron energy is largest. The previous exam-
ple showed that the energy of the recoil photon for

this angle is E' = ZEEOEU. The corresponding elec-

tron energy is Ee:E—E/:E—E/:E—% =

EQE+E)-EEy _ _2E
2E+E, = E3E+E, -

For a 2-MeV photon this is %E =1.77 MeV.
The electron can have any energy from zero up to this

maximum.

In pair production 1.02MeV (=2Ey) is used
to create the pair. The rest, 0.98 MeV, is shared
as kinetic energy between the electron and the
positron.
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EXAMPLE 5

A positron and an electron are at rest next to each
other. What happens?

Ans.:

The positron and the electron disappear. They anni-
hilate. In their place two photons appear, going
in opposite directions, each with the energy Eo =
0.51 MeV.

X-rays

The final process that we will consider is x-ray
production. Actually there are two processes.
They occur together when a beam of electrons
hits a target material. (In commercial x-ray tubes
itis usually a metal high up in the periodic table of
elements, because the emission of x-rays is then
more likely.)

When the electrons hit the target, they are
stopped. This means that they undergo an accel-
eration, and we already mentioned in connection
with the Bohr model that accelerated electrons
are expected to radiate. In x-ray production
this actually happens. The result is easily under-
stood in terms of photons. The electrons can
give the photons various amounts of energy, but
the maximum energy that a photon can get is
equal to the energy of an electron in the beam.
The emitted photons have a maximum energy
and frequency and a corresponding minimum
wavelength. All lower energies are possible, and
the process is therefore called continuous x-ray
production.

characteristic x-rays

x-ray
intensity

continuous x-rays

)J fmax

The second process that occurs simultane-
ously is the result of the fact that the electrons
can raise the atoms of the target material to

higher energy levels or knock electrons out
completely. The target atoms will come back to
the ground state with the emission of photons.
The photons have the energies characteristic
of the energy-level structure of the target atoms
and are therefore called characteristic x-rays.
Because the target is a heavy metal, the x-ray
energies are in the range of 1000 eV (keV) rather
than the eV of the hydrogen atom.

EXAMPLE 6

The electrons in an x-ray tube are accelerated by
a potential difference of 12kV in an electron gun.
What are the minimum and maximum energies, fre-
quencies, and wavelengths of the x-rays that are
produced?

Ans.:
The maximum x-ray energy is 12keV and the min-
imum is zero. The minimum frequency is zero and

the maximum wavelength is infinite. The maximum

E _ (12000)(1.6x1071%) 18
= arios — =2.9%x107° Hz.
c 3x108

The corresponding wavelength is 7= 35101 =
1.03x 1071 m = 0.103 nm.

frequency is

12.2 The new synthesis

Photons and electromagnetic
waves

There was an overwhelming amount of evidence
that showed that light and other kinds of elec-
tromagnetic radiation consist of photons, each
with a definite amount of energy and a definite
amount of momentum, both proportional to the
frequency.

But what does it mean to have a photon with
a certain frequency? Frequency and wavelength
are the attributes of waves, not of particles.
What happened to the electromagnetic waves
that had so successfully explained the phenom-
ena of light earlier? There seemed to be no way
that a particle theory could explain interference
and polarization.

What a dilemma! More and more phenom-
ena were discovered that could be explained only
by assuming that light consists of photons. At
the same time the phenomena of interference and
polarization seemed to make it clear that light
is a wave phenomenon. Two theories seemed to
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be necessary to describe light, and the two were
quite incompatible.

So which is it? Does light consist of particles
or waves? Is it just one of the two, or both, or
neither one? The question is at the heart of the
difference between classical physics, i.e., New-
tonian mechanics and the electromagnetism of
Maxwell, and modern physics.

Faced with incontrovertible evidence for
light waves as well as for photons there seemed to
be no way out. The established view of the time
became that it had to be both, with light propa-
gating as waves and being emitted and absorbed
as photons. It didn’t seem to make sense, but no
one knew how to resolve the dilemma. There was
good reason to believe that important elements
to understanding were missing, but that is eas-
ier said looking back from our present vantage
point.

Complementarity

Bohr tried to transform ignorance into virtue
by enshrining it in a new philosophical princi-
ple called complementarity. He said that both
aspects of light exist. They represent complemen-
tary views that are different and even opposite
and incompatible. Only by looking from differ-
ent viewpoints and accepting both can the whole
range of phenomena surrounding the concept
of light be seen and understood.

Having established a principle meant that it
could, perhaps, be applied to other phenomena.
Bohr tried to do this. He pointed to complemen-
tary approaches in realms far from physics. There
is reason and emotion, thought and sentiment,
justice and love. The roles of actor and specta-
tor are complementary, in that it seems that you
can only be one or the other, but with a fuller
view resulting from being both. And think about
being both a student and a teacher! Bohr sug-
gested that different cultures are complementary,
in that differences in background lead to pro-
found differences in points of view, with a higher
synthesis coming with knowledge and experi-
ence of the complementary modes of life and
thought.

The photons and their guide

Today we can make a beam of light with such
small intensity that what we observe is only one,

or just a few photons. Each can be separately
detected by a counter.

Is light really just photons, or is it pho-
tons sometimes and waves at other times? Bohr
said that both were necessary, and represented
complementary points of view. Only with the
inclusion of both apparently incompatible sets of
phenomena could the full range and meaning of
the concept of light be understood.

Today there is a better answer, consistent
with all observations and free of the earlier
contradictions. This, then, is the synthesis of the
wave and particle descriptions: light is an elec-
tromagnetic wave. It moves through space as a
vibration of electric and magnetic fields. The elec-
tric and magnetic fields travel together just as
Maxwell described them. The experimental evi-
dence consists of Young’s double slit experiment
and all the other phenomena that are the result
of interference effects.

What Maxwell didn’t know is that the field
is quantized. When it interacts with a screen
or anything else, it can do so only in definite
amounts, each of which is a quantum of the elec-
tromagnetic field. The photon is a quantum of
the electromagnetic field.

We don’t know where a photon will appear
on the screen. If there is only one it can be any-
where. Only when there are many of them can we
predict what the pattern on the screen will be.

The intensity of light can be described and
calculated from the wave theory just as was true
before photons were ever thought of. Maxwell
showed it to be proportional to the square of
the electric field. Now, however, we have to
interpret the intensity as telling us how many
photons are likely to be observed: the square
of the electric field at any point on the screen
is proportional to the probability that a photon
can be observed there. We need both concepts.
The wave tells us where the photons are likely
to be.

The electromagnetic wave, with its propa-
gating electric and magnetic fields, is a ghostly
presence, guiding and deciding what can be
“seen,” but it is not itself directly observed.
What we observe are the photons, the quanta
of the field. Whenever the wave hits something,
as for example in the photoelectric effect, it can
lose energy. But it can do so only in pieces, in
the quanta of the field. We then observe pho-
tons, with their definite energy and momentum.
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We can’t tell precisely where any one of them
will be. But together they form the patterns
that can be calculated from the wave theory,
and that Maxwell had described and calculated
earlier.

The fields are continuous. The photons are
not. They are discrete. They are the quanta of the
electromagnetic field.

Are the photons there before they are
observed, before the interaction takes place? No,
only the wave propagates. It fills space and can
go through two slits at the same time. Light is not
a beam of photons. They are there only when the
wave loses energy by hitting a screen or some
other material.

So is light still sometimes a wave and some-
times a particle? Is it still “both”? In some ways
it may still seem to be so, but what we have
now is a description that encompasses the prop-
erties of waves and particles. It is neither of the
two, but more than both. The new picture that
we have of what happens is more complex, and
richer than either one or than the two taken
separately.

Beyond light: electron waves
and the new synthesis

The reconciliation of photons with electromag-
netic waves received its greatest impetus from the
realization that the same considerations apply
to electrons, and even further, to parts of atoms,
and eventually to all particles and their combi-
nations.

Before 1905 light had been thought to con-
sist of electromagnetic waves. From then on
it became clear that it also had the attributes
normally associated with particles. Now (from
1925 on) electrons, the quintessential particles,
were seen to have the wave attributes that had
never before been considered appropriate for
them.

We called an electromagnetic wave a ghostly
presence that can exchange energy only in
quanta. Similarly there are waves that describe
the behavior of the electrons. They are no more
and no less ghostly than the electromagnetic
waves that we are so familiar with, and that we
have come to know and learned to use in their
various forms.

We can make double-slit experiments,
just like Young’s double-slit experiment, with

electrons. This time again there is a wave that
travels through space and through the two slits.
Again there is a field—this time it is the “elec-
tron field.” We can observe it when it interacts
with a counter or with a television screen. And
again the field can transfer energy only in discrete
amounts, as the quanta that we call electrons.

We are so used to electromagnetic waves
that in spite of what we have called their ghostly
nature, we don’t think of them as particularly
mysterious or obscure. Perhaps it’s time we gave
equal rights and recognition to the waves that
guide the observation of electrons and other par-
ticles of matter. Our mistrust is shown by the
fact that we don’t even have a good name for
them. They are sometimes called matter waves.
Today’s materials science, the physics and chem-
istry that shapes our lives, is unthinkable without
a knowledge of these waves. After more than
three quarters of a century they are part of our
common heritage, but still not part of common
awareness and knowledge.

The quantum-mechanical description re-
quires a new attitude toward the physical uni-
verse, incorporating uncertainty and probability
in essential, inescapable ways. Some of the physi-
cists most closely identified with bringing about
the new view battled against this feature, includ-
ing Einstein, Schrodinger, and de Broglie. In this
they were largely unsuccessful, but many physi-
cists today believe that the last word may not yet
have been written about this question.

Let’s see how the great change in attitudes
began. We’re back in 1924. We know about
photons with their energy, E, equal to hf, and
momentum, p, equal to %, so that for them
E = pc. We also know that we can talk about
the wavelength, ), of the radiation, equal to /5(

This leads to E = hf = % We can combine the
two expressions for E to give pc = h—f or\ = %

Along comes graduate student Louis de
Broglie who says suppose, just suppose, that this
relationship works not only for photons but
also for electrons. No one had ever consid-
ered the possibility that wave phenomena and
a wavelength could conceivably be associated
with electrons. And we wouldn’t remember this
stab in the dark either if it hadn’t turned out to
be one of the great seminal ideas of the twen-
tieth century. De Broglie got his Ph.D. and a
Nobel Prize, and h/p is called the de Broglie

wavelength.
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Did de Broglie have any evidence? Yes he
did, of a sort. He said that if there are waves
associated with electrons, then they can form
standing waves around a proton at a distance
r from the proton if the circumference, 27r, is
equal to a whole number of wavelengths. Imag-
ine a wave traveling around the proton. It goes
around once. It goes around a second time. If
the second time around the maxima and minima
are exactly where they were the first time (are
in phase), the waves will add, i.e., interfere con-
structively. If, on the other hand, the second time
around, the wave’s maxima fall behind the pre-
vious ones, they will fall further behind the next
time, and the next time, until they cancel, i.e.,
interfere destructively. Only when the circumfer-
ence, 27z, is exactly equal to a whole number
of wavelengths, 7\, where 7 is a whole number,
can the wave continue as a standing wave, as in
the figure. Since \ = g or miv, the criterion can
also be written as 2ntr = % or mvr = nh, exactly
the quantization condition that Bohr had written
down in 1913 when he invented his model.

Where did Bohr get this relation? There was
an attempt at justification, but by itself it would
hardly have seemed convincing, except that it
worked, which means that combined with some
elementary mechanics and Coulomb’s law it
led to a set of values for the possible energies
of a hydrogen atom which were correct, which
were, in other words, experimentally observed.
De Broglie’s hypothesis led to the same rela-
tion. This suggested, at the very least, that there
might be something to de Broglie’s radically new
approach.

Further evidence followed: Clinton Davis-
son and Lester Germer, working at the Bell Tele-
phone Laboratories, then in New York City, saw
some strange peaks in the intensity of an elec-
tron beam reflected from a nickel crystal when
the angle was varied. These were soon inter-
preted as being the result of interference between

the reflections from successive atomic planes of
waves whose wavelength was % In other words,
they observed the interference pattern of electron
waves as they were reflected from different planes
of nickel atoms.

Shortly afterward George P. Thomson
demonstrated what we now know as electron
diffraction, the pattern produced by an elec-
tron beam when it passes through a thin crystal.
(G.P.s father, J. J. Thomson, is credited with the
discovery of the electron by showing that a beam
of electrons has a definite ratio, m%’ of charge
to mass. It is sometimes said that he described
the particle properties of electrons while his son
demonstrated the electron’s wave properties.)

The beams used by Davisson and Germer
and by G. P. Thomson were monochromatic, i.e.,
they consisted of electrons of a single energy and
momentum, and the experiments showed them
to correspond to a single wavelength.

Even in the simplest atoms the electrons do
not all have the same energy. In fact, what seemed
to be de Broglie’s strongest point, the explana-
tion of the quantization condition, turned out to
be, at best, suggestive of a better approach. The
attempts to take the Bohr model and its quantiza-
tion condition further had already limped along
for more than a decade. But now everything
was about to change, when following de Broglie,
quantum mechanics was developed.

From de Broglie to Schrodinger

De Broglie’s hypothesis worked perfectly for the
electron beams of Davisson and Germer, and
G. P. Thomson, with their single wavelengths,
single momentum, and single energy. But Bohr
had already shown that in atoms the electrons
can have different energies and exist in different
quantized energy levels. Was there now a way
to describe the atomic electrons using de Broglie
waves?

This is the step that Erwin Schrodinger
took in 1925, opening up the field of quantum
mechanics, the vastly successful framework for
all modern theories of matter.

De Broglie’s waves, with their single wave-
length, momentum, and energy, represent mo-
tion without interactions, motion in accord with
Newton’s first law. Schrodinger’s leap into the
unknown created an analog to Newton’s sec-
ond law. He showed how the electrons behave
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when they interact with other particles. In the
hydrogen atom, for example, the electron inter-
acts with the proton as a result of their electric
interaction. Instead of the concept of forces,
however, Schrodinger used that of potential
energy. For forces like the gravitational and elec-
tric forces that depend only on position, we can
use force or potential energy. Either of the two
concepts, whichever is more convenient in a par-
ticular situation, can be used to describe what
happens. In the hydrogen atom, for example, the
force between the electron and the proton is ]%2

. . 2
and the potential energy is — £

¢, where k is the
constant in Coulomb’s law, ¢ is the magnitude of
the charge on the electron and on the proton, and
r is the distance between the two. (For the poten-
tial energy we have, as usual, taken the reference
level to be where r becomes infinitely large, i.e.,
where % =0.)

Schrodinger started with a relation, or
“wave equation,” that describes the de Broglie
waves. It is usually expressed in terms of the
wavelength, %, but because the wavelength is
related to the momentum, p, by A = g, it can
also be expressed in terms of the momentum, or
in terms of the kinetic energy, K = %

With de Broglie waves we are still talking
about electrons moving with constant wave-
length, momentum, and kinetic energy, unaf-
fected by forces. But at this point we can ask
whether a similar kind of relation, a new wave
equation, might work when there are forces, and
a potential energy, U. This is the crucial step that
Schrodinger took. He said that if there are both
a kinetic energy, K, and a potential energy, U,
than the total energy is E = K+ U, and we can
substitute the quantity E — U for K in the former
wave equation.

The resulting equation is the Schrddinger
equation, and it created a revolution.

How does the Schrodinger
equation work? What can it do?

Our objective is to show you the Schrodinger
equation and how it leads to results. Most of
what we know about atoms (not just hydrogen
atoms), as well as about molecules and solids
and a lot more is obtained this way. We won’t
do any of the calculations for atoms and more
complicated systems, but we will show examples

that use some of the methods and illustrate the
nature of the results that can be obtained.

Suppose we want to know about the hydro-
gen atom. We’ll assume that the nucleus is fixed
and concentrate on the electron. The “input” is
the relation between potential energy and posi-
tion, which for the electron in the hydrogen atom
is U= —%. We substitute this relation for U
in the Schrodinger equation. The equation now
leads to the “output” or “solution.” That’s a
wave function with an amplitude that’s usually
called W (capital Greek Psi). It tells you where the
electron is likely to be. We can’t find out where it
is exactly. We can only determine the probability
of finding it in a given region.

It turns out that the equation has such solu-
tions only for certain values of the total energy,
and these turn out to be the allowed, quantized
energy levels of the hydrogen atom that we are
looking for! In other words, we can find out
as much as it is possible to know about where
the electron is for each value of the energy, and
we can find the spectrum of the possible energy
levels.

Not only that, but the values of the orbital
angular momentum come out right this time,
and once we learn how to deal with the equa-
tion and add a few extra features, so do all the
other atomic and molecular properties. Every
place where the Bohr theory was stuck now
becomes accessible. This includes the description
of atoms beyond hydrogen in the periodic table
of elements, for which the potential energy is no
longer simple because there is then more than one
electron.

To follow our program we will first review
how all kinds of waves can be represented
by sine functions. We will then apply this knowl-
edge to electron waves by substituting the de
Broglie wavelength » = %, and show how this
leads to the Schrodinger equation. Finally we will
show for some examples how the Schrodinger
equation leads to the wave functions and the
energy levels, i.e., to the knowledge about where
a particle is and what energy values it can have.

The main difficulty is that there are symbols
that you are probably not used to (like ). Don’t
be put off by them! There is some algebra, but
you will see that it isn’t any more difficult than
what you have already worked with. We would
like to encourage all of you to read the following
sections before you go on to the Heisenberg
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Uncertainty Principle. Some of you may not go
through all the details, but we think that you will
be happy to see that some of the most modern
ideas in physics are not at all mysterious.

We have not yet written down the famous
equation, so that our talk about it is so far some-
what vague. We now want to get more serious.
This wonderful part of physics, which plays such
a profound role in all we know about the world
of atoms, and in much of modern technology,
has largely remained hidden from a majority of
the population. We would like you to take a
closer look at it, and although it may mean some
courage on your part, you won’t want to miss it.

Representing waves

The Schrodinger equation is a wave equation,
and before we develop it in detail we will review
the way waves of all kinds are described math-
ematically and with graphs. We already know
how to represent waves that repeat in space
after one wavelength with sines and cosines. (We
won’t deal with the repetition in time.) The figure
shows a graph of sin x as a function of x. Below
it is the graph of cos x as a function of x, which
looks the same, except that the starting point is
different. And below it is a graph of —sin x, i.e.,
the first graph upside down.

sin x
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Cos X \ .
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We can see that a special feature of the first
two graphs is that at every value of x the middle
graph gives the slope of the graph above it. We
see, for example, that when sin x is horizontal,
so that its slope is zero, at 1t/2, 37/2, etc., cos x
is zero. When sin x is zero, its slope is one, and
so is the value of cos x. The slope of sin x vs. x
1S COS X VS. X.

Another way of saying exactly the same
thing is “the derivative with respect to x of sin x
is cos x.”

Underneath both graphs is the graph of
—sin x vs. x, and you can see that it gives the
slope of the graph just above it, of cos x. This
can also be expressed by saying that the deriva-
tive with respect to x of cos x is —sin x. It is also
the “second derivative” of sin x. We see that the
function sin x has the property that its second
derivative (the slope of the slope) is equal to the
negative of itself.

There is a special notation for these state-
d
B dx
and 7-(cos x) = —sin x. For the second deriva-

. . 2. .

tive of sin x, j?(sm x) = —sin x (read d2dx?
2

of sinx = —sinx.) And if y = sin x, % = —y.

You can stay with “slope” instead of “deriva-
tive,” and “slope of the slope” for the second

ments. For the first derivatives, % (sin x) = cos x

derivative. They mean the same thing.

For our electron wave we’ll need the slightly
more general function y = A sin kx. The ampli-
tude, A, and the wave number, k, can have values
to suit the particular wave that we want to con-
sider. For this function the slope is kA cos kx.
We can write the relation between the function
and its slope as % = kA cos kx. We can now
look at the slope of kA cos kx. Itis —k>A sin kx,
which we see to be —k2y. This is the first deriva-
tive of RA cos kx and the second2 derivative of
y = A sin kx. We can write it as % = —k?y.

These functions repeat when kx is increased
by 2. In other words, A sin kx =Asin (kx + 27)
or A sin kx = A sin k(x + %‘). This shows that
the function repeats when x is increased by ZT“

But this is just what we mean by a wave-
length. We see that the wavelength, %, is equal
to ZT” The quantity k is called the wave number.
(The symbol is the same as the one we use for
the constant in Coulomb’s law, but it is a quite
different quantity. It should be easy to see from
the context which one we’re talking about at any
one time.)

That’s it for the mathematics. The rest is
just some talk and playing around with what
you already know.

. 2 . .
First the talk. 42 = —k%y is a relation
. dxz . .
between a function (y) and its second deriva-

. 2 . .
tive (%). It’s an equation. We can call it the
wave equation. It contains a derivative, so it’s

called a differential equation. y = A sin kx is one
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function that is a solution of this equation. What
does that mean? Only that if you substitute
A sin kx for y in the equation, the left-hand side
is equal to the right-hand side.

All this was well known long before the
twentieth century, and had been used success-
fully to describe all kinds of waves, such as waves
on a string as on a violin or guitar, or sound
waves, or light waves.

Finally the best we have: the
Schrédinger equation

What is it that oscillates in an electron wave?
There is nothing that moves, as on the string or
in the sound wave. There isn’t a simply observ-
able physical property that changes, as the pres-
sure does in a sound wave and the electric and
magnetic fields in an electromagnetic wave. The
electron wave tells us where the electron is. Not
exactly, but, after we square it, it tells us what
the probability is of observing the electron in a
given spot.

Part of the mystery that still seems to sur-
round the concept of electron waves comes from
the fact that we have never found a good word
for whatever it is that changes. It continues to
be called the wave function. It would be nice to
have a symbol that would make the waves seem
less remote, but that hasn’t happened either. The
symbol that is universally used for them is W, the
Greek psi.

Now for the playing around. For all waves
k= ZT“ For the de Broglie waves we also have
n= %,sothatk: 2%17 or%andpzhk.

We need the k that appears in the wave equa-
tion, but we want to express it in terms of the

. . . . 2
kinetic energy, K, which is %mu2 or f—m For the
. . . 21,2
de Broglie waves we can write it as K = %,

that k% = 225,
The same old differential equation can now
be written to say that the slope of the slope, or

o 2y .
the second derivative, ?17\21" is equal to —k2W,

2 2 2
dw _ _2mKyy o - dTW gy

e T2mde? T

This is all just playing around with symbols,
and has so far accomplished nothing except to
recast the wave equation for a noninteracting
electron. Now, however, comes the leap of faith.

Let the electron interact with other charged par-

ie.

ticles, e.g., a positively charged nucleus, so that

there is a potential energy. What happens if we
assume that the equation also holds when there
is such a potential energy, U, so that the total
energy, E, is K+ U, and K is equal to E — U? We
rewrite the relation once more, but with E — U

instead of K. That gives us —% ‘;,27‘21’ =(E-U)Y,

which we can also write as — % ‘57\2[’ + UV = EV.
This is what we’ve been leading up to. This

is the Schrédinger equation.

What does the Schrodinger
equation tell us?

The Schrodinger equation doesn’t look anything
like Newton’s second law, but that is what it cor-
responds to. It looks, in fact, more like the law of
conservation of energy. If we think of the term
with the derivatives as representing the kinetic
energy, then it says “K”W+ UV = EW, which
looks reassuringly familiar. Newton’s second law
comes to life when we say what the forces are.
The same thing happens here when we specify
the potential energy. Here is our prime example:
let U= 76‘32, so that it describes the potential
energy of an electron in the field of a proton.
(Before we can do that we have to generalize our
one-dimensional Schrodinger equation to three
dimensions by adding derivatives with respect to
y and to z.) The equation now becomes the key

that unlocks the secrets of the hydrogen atom.

That key is so different from the classical,
Newtonian one that it took a while to figure out
how to use it, and there are aspects of the proce-
dure and the results that remain controversial to
this day.

Let’s go back for a moment to the waves on
a guitar string. For them y = A sin kx. We saw
that k = ZT” Now we know, quite without any
new ideas, that if the string has a definite length,
waves on the string can exist only with certain
definite wavelengths, corresponding to definite
musical notes.

The situation is similar for the Schrodinger
equation. First put in the potential energy. The
solutions are a set of wave functions, ¥, now not
just sines and cosines. They are still functions of
the space coordinates. The wave function tells us
whatever there is to know about where the par-
ticle that the equation describes is located. That
information is different and less exact than in the
classical case. It tells us the probability of finding
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the particle at any given place or in any given
region.

There is a second piece of information that
we get. There are solutions only for certain def-
inite values of the quantity E, the total energy.
Each value of E corresponds to a possible, al-
lowed value of the energy, i.e., to an energy level
of the system.

For the hydrogen atom the allowed ener-
gies come out to be exactly those of the Bohr
model, but the angular momentum which Bohr
had wrong is now correct, and a whole lot of
other stuff, which Bohr couldn’t even get close
to, is also there. Most importantly, we can
describe the properties of the other, more com-
plicated, atoms as well as combinations of atoms
in molecules or solids.

How does the wave function tell us where
the particle that it describes is to be found? For
a wave on a string the energy is proportional to
the square of the amplitude. For an electromag-
netic wave, in which the electric field varies in
time and space, the energy is proportional to the
square of the magnitude of the field. When an
electromagnetic wave hits something, the square
of the electric field in any small region of space
is proportional to the number of photons to be
found there. It is proportional to the probability
of finding a photon there. That is also the way to
use the wave functions that are the solutions of
the Schrodinger equation. When the matter wave
interacts with a screen or with a counter or with
anything else, the square of the magnitude of the
wave function, W2, in a given region is propor-
tional to the probability of finding our particle in
that region.

Here, once more, is what we need to do
to determine how a particle moves when there
are forces on it. We represent the forces by the
way the potential energy changes as the particle
moves. For the electron in the hydrogen atom, for
example, it is —%. For electrons in other atoms
it cannot be written down so simply because there
are other electrons, but there is still some func-
tion that describes the electric potential energy.
We put the appropriate potential energy in the
Schrodinger equation and try to find a function
that is a solution to the equation. This also gets us
the values of the energy, E, for which solutions
exist. They are the values of the energy levels.
For each such value there is a solution (or per-
haps several). It is a function, the wave function,

that when substituted in the equation makes the
right-hand side equal to the left-hand side. When
we square this function we get another function
of position, and this is the function that gives us
the probability that we can find the electron in
any given region.

The information that we get about the posi-
tion of our particle is not exact. We get only a
probability. That’s the best that we can do. But
it’s a lot. It allows us to describe the structure
of atoms, their combinations, and much more.
Quantum mechanics is the framework on which
our knowledge of the structure of matter is built.

EXAMPLE 7

The “square well”

0]

A

10 10 oo

An electron can be represented as being in an energy
well that is described by U = 0 between x = 0 and
x =L and by U = oo outside the well, everywhere
else. This may seem like an unrealistic problem. It is,
however, the simplest model for a number of phys-
ical situations. It can, for example, be used for the
nucleus, with nucleons replacing the electrons. To
keep the problem as simple as possible we limit it to
one dimension. The extension to three dimensions is
straightforward. The problem also illustrates that the
quantization comes from the confinement of particles
to a limited region of space.

(a) What are the wave functions?

(b) Sketch the wave functions for the first three
energy levels.

(c) What are the energy levels of the system?
(d) Draw an energy level diagram.

Ans.:
(a) The particle cannot be outside the well, where
the potential energy is infinitely large. The wave
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(c)

function must therefore go to zero at the well’s
boundaries. Inside the well the Schrodinger
equation is

n d*w

S Sy 5V

2m dx?
where we have used the x component only, and
the potential energy U = 0.

Since U =0, there is only kinetic energy,

. We can therefore write

2'”E W, where the right-

and E = 7mv2

d*u Lll
d B 2

hand side is equal to — ZZ , Wthh is equal to —k2,

the equation as

Where kis the wave number ,i.e., the equation
2
d —k=W

We know that this equation has solutions

is

that are sine and cosine functions. Both have the
property that the slope of the slope (the second
derivative) is proportional to the negative of the
function itself. We need a function that is equal
to zero at x = 0. We cannot use the cosine func-
tion since cos 0 = 1. The sine function, sin x,
on the other hand, is zero at x = 0. The wave
functions therefore have the form ¥ = A sin kx,
where we still have to determine the possible
values of k.

The wave function also has to go to zero at
x = L. We can therefore immediately see what
the wave functions are. They are sine functions
that have the value zero at both ends of the well.
There is no restriction on how often they can
go to zero inside the well, so there is an infi-
nite number of such wave functions. The largest
wavelength is such that half the wavelength is
equal to L, i.e., that L = %)\. For the next one
L = . Forall of them L = n%
tion is described by a value of the gquantum

Each wave func-
number n. Since k = 2“ and A = zk“, L= %%
ork ="~

We can see that also from the relation for
the value zero of the wave function at x = L,
sin kL = 0. This is so for kL = 0 and also for
kL = 7, or 27, 3w, or, in general, nw. Since
k= 2—” this gives {’L =nm, or L = n%, and
k= %, as before.

We can now write the wave functions as
W = A sin 7% x. There is a different one for each
value of 7.

To see the values of the energies, we have to

2 _ Pt R22

go back to E. E = %mv - We can

=L =
now substitute the quantized values of k, k =
2 22 2.2
nem _ 2 h°T
togetE_Zm [ or E=n"3-ts.

(b)
y a X
! NN
v =
@ 5
3
2

For a particle with a mass 7 and a well of
width L, the energy levels are #2E1, where Eq is
the energy of the lowest state (the ground state)
Ey = 2 LZ
0 inside the well, this energy is entirely kinetic.

Since the problem specifies that U =

EXAMPLE 8

An electron is in an energy well that is described
by U =0betweenx =0andx =L,and by U =W,
where W is constant, outside the well, everywhere
else.

(a) Describe the form of the wave functions inside
and outside the well for values of the energy less
than W.

(b) Sketch the wave functions for the first three
energy levels.

Ans.:
(a) Inside the well the wave functions are similar to
the ones in the previous example, but this time
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the values at x = 0 and x = L are not zero. They
can be a combination of sines and cosines. We
can see this from the fact that there is, this time,
a Schrodinger equation with a different kind of
solution also outside the well.

Outside the well the Schrodinger equation is
_Rdy + W = EW. Since E is smaller than W,

2m dx?
2 g2
f—m% = (W — E)W, where

both sides are positive.

we can write this as

This time, outside the well, we need a func-
tion for which the slope of the slope (the second
derivative) is proportional to the function itself
and not its negative. Such a function is ¢?*. The
function ¢* has the property that its slope is
equal to the function itself. For e?* the slope
is ae® and the slope of the slope is a?¢™.

Since a can be either positive or negative,
the wave function outside the well can either
increase or decrease exponentially. We have to
discard the exponential increase, which goes to
infinity and would lead to unphysical results.
(The particle would be infinitely far away all the

time.) What remains is the exponential decrease.
It has to be fitted to the sinusoidal wave function
inside the well in such a way that the function
and its slope are continuous, in other words that
there are no breaks and no kinks. (A break in
the wave function would mean that it would
have two values and therefore two probabilities
there. A kink would mean two values for the
slope, and hence two possible values for other
physical quantities.)

This result is quite different from the classical
result. Newtonian mechanics cannot envision
a situation where the potential energy is larger
than the total energy so that there is a negative
kinetic energy. Here there is a rapidly decreasing
but finite probability that this occurs. If we think
of the “well” as a box, we see that the particle
has a finite probability of being outside the box
for all finite heights of the box.

EXAMPLE 9

This time there is a “box” with a finite “wall,” as in
the previous example, but further outside the energy
E is larger than the potential energy U. Draw a sketch
of a possible wave function.

Ans.:
In the well or box the wave functions for energies
less than the height of the walls are sines as before.
In the wall section they are exponentials as in the
previous example. There is now a third region, far-
ther outside. Since E is greater then U in this region,
the wave functions are again sinusoidal, but with a
smaller amplitude.

The fact that there is a solution outside, in this
third region, means that there is some chance that
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the particle can be found there. In other words, the
particle can “leak out” or “tunnel” out of the box.

This could not occur in Newtonian mechanics.
Since the particle could never be in the wall region,
where U is greater than E, corresponding to a nega-
tive kinetic energy, there is no way for the particle to
overcome the barrier represented by the wall of the
box, and it would have to stay inside. The tunneling
out is possible according to quantum mechanics. The
observation of tunneling is a strong confirmation of
the correctness of quantum mechanics. It describes
the tunneling of alpha particles from the nucleus in
radioactive decay and the overcoming of barriers by
electrons in solids.

EXAMPLE 10

What is the Schrodinger equation for a particle in
simple harmonic motion?

Ans.:
The potential energy of a particle moving along the
x-axis in simple harmonic motion is %kxz.

This potential energy is substituted for U in the
Schrodinger equation (using only the x component)
to get

2 dzw 2

The solution leads to the energy levels (72 + 5 Dbt
The spacing of the levels is the same as that of Planck,
but the lowest level is not at E = 0, but at E = %hf
That there is a lowest energy that is not zero (a
“zero-point energy”) is characteristic for quantum
mechanics. It shows that there is some motion even
at the lowest possible energy.

Heisenberg and the
uncertainty principle

Quantum mechanics was developed almost at
the same time, independently, by two people.
Werner Heisenberg used mathematical methods
quite different from those of Schrédinger, and
at first it seemed that the two approaches had
little in common. Shortly afterward, however,
Schrodinger showed that in spite of the fact that
they look so different, the two theories are, in
fact, equivalent.

Heisenberg emphasized a feature of quan-
tum mechanics that has come to be known as
the Heisenberg uncertainty principle. Consider

first a de Broglie wave with a single wavelength,
. It is not possible to say where the wave is. It
extends through space. The momentum, on the
other hand, equal to %, is precisely known.

It is possible to add waves with differ-
ent wavelengths, and so to construct a “wave
packet” that is in a limited region of space. To
do this it is necessary to use waves with different
wavelengths and the wave’s momentum is then
no longer known exactly. With an infinite series
of waves, each with a different wavelength, it is
possible to describe a localized particle exactly,
but the wavelength, and hence the momentum,
is then completely unknown.

Now let’s look at what happens between
these two extremes. Suppose you try to mea-
sure the position of an electron. You can shine
light on it, i.e., you can send a photon toward
it. By seeing the photon bounce off the elec-
tron you can determine the electron’s position.
But with light of wavelength X, the position can
be determined only with an uncertainty Ax of
about L. (With a microscope you can’t see any-
thing smaller than the wavelength of the light that
you are using. You don’t know where a wave
is, closer than with an uncertainty of about its
wavelength.) The photon that strikes the elec-
tron has a momentum %, and therefore transfers
an amount of momentum of about this magni-
tude to the electron. The momentum it gives up
can be this much or less, depending on the angle.
The momentum of the electron, Ap, is there-
fore uncertain to about this extent. We see that
the product of the two uncertainties is equal to
about h. This is a general result. Light with a
smaller wavelength will reduce Ax, but the pho-
ton will have more momentum, and so increase
Ap. The product AxAp remains the same.

Note that the uncertainty here is intrinsic,
i.e., it is not related to just how we measure
the quantities. There is no way to get around
the limitations of the Heisenberg uncertainty
principle.

EXAMPLE 11

Show that the ground-state energy of the hydrogen
atom is determined approximately by the uncertainty
principle.

Ans.:
To show this we will look at the extent of the
electron’s wave function as the uncertainty in the
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distance. In other words, we will take Ax to be about
equal to the radius 7. We will use the Bohr model to
estimate 7. (Of course the Bohr model was developed
more than a decade before the uncertainty princi-
ple, and was considered to be definite.) The lowest
possible magnitude of the electron’s momentum is its
value in the ground state. We don’t know its direc-
tion, and can consider the uncertainty Ap to be equal
to the magnitude of the momentum in the ground

state. The kinetic energy is equal to the negative of

k2me*
2,24 282

e thatpzz% and p = Ap =

. pz
. Kis equal to 7,

kme?
h

the total energy, K = —E =

. For r we

will use the smallest Bohr radius, %, and we see
that AxAp = h, in keeping with the expectation from
the uncertainty principle.

We have to remember that the uncertainty prin-
ciple is itself not exact. The product AxAp is of the
order of b, but may be larger or smaller. It has been
shown that the smallest value that the product can
have is %

12.3 Order in the universe:
the elements

The beginning: hydrogen and
its quantum numbers

We now know how to write down the
Schrodinger equation for the hydrogen atom.

We use ,ez for the potential energy, U, in it. We
are not going to go through the solution process
here, but we will write down some of the results.

The energy of the hydrogen atom depends
only on the quantum number 7, and is equal to
L1, where Ey = —13.6eV.

The orbital angular momentum was already
quantized in the Bohr model by his quantiza-
tion condition mwvr = nh. The solution of the
Schrodinger equation for the hydrogen atom also
leads to the conclusion that it is quantized, but
with a different relation. It is related to a sec-
ond quantum number, ¢, and the orbital angular
momentum is equal to A/ €(£ +1).

A third quantum number, #1;, describes how
the atom can orient itself in a magnetic field.

These relations are not just pulled out of a
magic hat, but are the result of perfectly well-
defined mathematical procedures that need to be
used to solve the Schrodinger equation and that
existed and were known long before Schrodinger.

The numerological rules for the three quantum
numbers, 7, ¢, and m;, are the unambiguous
mathematical consequences of the Schrodinger
equation.

There is a fourth quantum number (115) for
the electron in a hydrogen atom, which is not
derivable from the Schrodinger equation. Like
the other quantum numbers it is related to a
dynamic property, in this case the electron’s spin
angular momentum. Its existence was discov-
ered, even before the advent of quantum mechan-
ics, when it was realized that there were twice as
many possible states (for the two possible spin
states) as could be accounted for without it.

Does that mean that it has no theoretical
justification or explanation? No, the situation is
much more interesting than that. It is also the nat-
ural outcome and consequence of an equation,
but one that goes beyond the Schrodinger equa-
tion. Unlike it, it is consistent with the special
theory of relativity. (In the Schrodinger equation
we use K = %mvz, which is equal to the kinetic
energy only when v is much less than c, the speed
of light.)

This equation, the Dirac equation, devel-
oped by P.A.M. Dirac in 1930, is not a gen-
eralization of the Schrodinger equation, but
rather a quite different equation whose pri-
mary achievement is that it describes properties
of the electron, including those that are direct
consequences of the theory of relativity. These
include the spin angular momentum, the spin
magnetic moment, and their ratio, the gyromag-
netic ratio. These properties cannot be derived
from the Schrodinger equation. If we use the
Schrédinger equation to find the energy levels of
hydrogen, these properties have to be included
separately.

The spin angular momentum of the electron
always has the same magnitude. It can be written
as hy/s(s + 1) so as to look like the orbital angular
momentum, but s can have only the single value
%. The component of this spin angular momen-
tum along the direction of the magnetic field can
take on two values, mgh, where m1 is equal to +

Lor 1.

EXAMPLE 12

What is the angle between the spin angular momen-
tum and the magnetic field in the ground state of
hydrogen?
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Ans.:

The spin angular momentum vector is S. Its magni-
tude, S, is iiy/s(s + 1), where s is the quantum number
that is always equal to %, so that § = A,/ %(% +1) =
0.866h. Its component along the magnetic field is
S, = %h. The relation between the two is S cos 6 =
S, or 0.866h cos O = 0.5h, so that cos 6 = % or

Lok = 54.7°.

0= cos™ g7856 =

Let’s review the hydrogen atom quantum
numbers. Here they are, together with the related
mechanical properties:

(1) n can vary from one to infinity. The
energy is %, where E;1 = —13.6¢V. The other
quantum numbers do not influence the energy.
(This is true only in the hydrogen atom!)

(2) ¢ can go from zero to n—1. The
magnitude of the orbital angular momentum is
VI +T).

(3) m; can vary between —[ and I. It describes
the component of the orbital angular momentum
along the direction of the magnetic field. This
component is equal to m1;h.

(4) mg can be either % or —%. The component
of the spin angular momentum in the direction
of the magnetic field is m;h.

Each possible set or combination of these
quantum numbers distinguishes a particular state
of the atom with a different wave function. The
energies of some of the states may be the same,
and this is true in hydrogen (only!) for all of the
states with the same value of the quantum num-
ber 7. Similarly, the orbital angular momentum
is the same for all of the states with the same
value of the quantum number ¢.

EXAMPLE 13

What is the sequence of energy levels in the hydrogen
atom?

Ans.:

In the hydrogen atom the energy is determined only
by the quantum number 7. But for each value of 7
there is more than one state, each with its different

wave function. For the ground state, with n =1,
there are two states, one with mg = % and one with
ms = —%. Both have ¢ =0 andm; =0.Forn =2, ¢
can be zero or one. For £ = 0, m; = 0, and there are
again the two states with the two different values of
ms. Still for n = 2, there are also the states with ¢ = 1.
For them m1; can take on the values 1, 0, and —1. For
each there are the two possible values of s, so that
there are six states, for a total of eight for this value
of n.

The next higher levels are for 7 = 3. In hydrogen
all have the same energy, with two states for ¢ = 0,
six states for ¢ = 1, and 10 states with £ =2 (m; =
2,1,0,—1, and —2, each with the two values of ),
for a total of 18 states with this value of 7. For n = 4
there are 14 more states, and so on.

n

3 =0 =1 (=2

2 (=0 (=1

1 =0
€=2 m=-2,-1,0,1,2 m=+%  (10states)
€=1 m=-1,01 m=+% (6 states)
€=0: m=0,m=x"% (2 states)

3

Hydrogen shows the way:
the other elements

We can now look at what happens in atoms other
than hydrogen. The first obstacle arises imme-
diately. In the hydrogen atom we have just two
particles, the proton and the electron. In all other
atoms we have a nucleus and more electrons.
Even in the old, classical, Newtonian scheme
we don’t know how to deal with more than two
particles at a time. At least we don’t know how
to do it exactly.

What works sufficiently, most of the time, is
to use a model that considers just one electron at
a time, and to think of it as moving in a steady
field, which is the average field whose sources are
the nucleus and all of the other electrons. We
know that these other electrons are moving
around in ways that are impossible to know or
to follow, but we will use the blur that they rep-
resent as if it were a steady background for the
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one electron on which we choose to focus. We
can then talk about the wave function of that
one electron in the field of the nucleus and all the
other electrons.

The origin of order: the Pauli
exclusion principle

We now have to consider the principle that gives
rise to the hierarchy of the elements and leads to
their diversity and to their order in the periodic
table of the elements. Without it there would not
be the vast variety of properties among the ele-
ments and their combinations. The world would
be a much more homogeneous and bleaker place,
without a chance for us to exist. Here it is:

Each electron in an atom must be charac-
terized by a different set of quantum numbers.
This is the Pauli exclusion principle, discovered
by Wolfgang Pauli in 1925.

Without the Pauli principle all of the elec-
trons in an atom could be in the lowest energy
level, with the quantum numbers that the elec-
tron has in the ground state of the hydrogen
atom. The atoms would be much more similar
to one another than they actually are. The dif-
ferences between the atoms would be minor, and
combinations between them little different from
element to element.

With the Pauli exclusion principle the elec-
trons must have different sets of quantum num-
bers. They must move at different distances from
the nucleus, with different energies and angular
momenta, and be differently affected by mag-
netic fields. This is what underlies the richness
among the elements and of their combinations,
and the variety and complexity of chemistry and
biology.

Atomic structure: beyond

the Coulomb field

We can now go to the atoms of the periodic table
of elements beyond hydrogen. They have nuclei
that have more protons, so that there are also
more electrons in the neutral atoms.

Each time a proton is added to the nucleus it
changes the electric field and the electric potential
for all the electrons. If this were all, we could
deal with it very simply, because all that does is
to change the amount of charge of the nucleus.
The field would still be proportional to }2, one

that is called a Coulomb field. But we also add
electrons, in an unknown, complicated way, at
some distance from the nucleus.

The electrons exert forces on each other, and
as they move, the electric field changes with time
in unpredictable ways. If we want to calculate
what happens, we have to resort to approxi-
mations. The usual approach is to look at one
electron at a time, in the field created by the
nucleus and all the other electrons. We don’t
know that field from moment to moment, but
we can get a pretty good idea of its average over
time and use that. This average field is no longer
the Coulomb field of a single charge at the center.
It is no longer proportional to %2

EXAMPLE 14

What are the quantum numbers that describe the two
electrons in the ground state of the neutral helium
atom?

Ans.:

Helium is the second element in the periodic table. Its
atomic number is 2. 7 is still one. ¢ and 77; both have
to be zero. Only my distinguishes the two electrons.
The quantum numbers are 1,0, 0, % and 1, 0,0, —%.

The number of protons in the nucleus (the
atomic number, Z) increases by one for each
step up the periodic table of elements. For each
added proton another electron is added to the
neutral atom. Where do these electrons go? The
new atom will normally be in its ground state,
the state with the lowest possible energy. Each
added electron will therefore go into the configu-
ration (the state) where it has the lowest possible
energy, and this is determined by the set of its
quantum numbers.

We know what happens when the electric
field is exactly that of a single charge. The
allowed states are then those of the hydrogen
atom. For this case we know the sequence of
energy levels. We know that the energy depends
only on the quantum number 7. The states with
the lowest energy are all the possible states with
n =1 (2 of them). The next lowest are the eight
with 7 = 2, all with the same energy (¢ = 0 with
two different values of m, and ¢ =1 with 3
different values of 1, each with two different
values of ), and so on.



284 / Quantum Physics

We have already seen that even with
Z = 2 the electric field is more complicated than
a Coulomb field. We now need to know what the
sequence of energy levels is in atoms other than
hydrogen. In addition to its dependence on 7, the
energy will then also depend on the value of the
quantum number £. Indeed, this ¢ dependence
is fundamental to the structure of the periodic
table of the elements.

The ¢ dependence and the order
of the elements

If all states with a given value of 7, or with a
given value ¢, are filled, the resulting distribution
of electrons is spherically symmetrical. We talk
about a filled shell (with a particular value of 7)
or a filled subshell (with a particular value of ¢).
In helium, for example, the 7 = 1 shell is filled
with its two electrons. Element number 3, with
three protons in its nucleus, is lithium. Look at
the third electron. It will have # = 2, but which
value of ¢ will correspond to the lowest energy,
and therefore to the ground state?

Higher angular momentum represents
motion farther away from the nucleus. We can
see how this comes about by going back to how
the Bohr model was extended before quantum
mechanics was invented by proposing that the
orbits could be elliptical. The “biggest™ ellipse is
a circle, and circular orbits represent the maxi-
mum angular momentum and the highest value
of ¢.

Bohr orbits for different angular momenta:

angular momentum and ¢

lowest (€ =0)

intermediate

D

highest
(circular orbit)

In this description lower angular momen-
tum corresponds to elliptical orbits. But what
is an orbit with zero angular momentum and
£ = 0? There is then no rotation at all, just back-
and-forth motion of the electron. It is straight-
line simple harmonic motion right through the
nucleus. The fact that the straight-line orbit can
be at any angle leads to he conclusion that the
state with £ = 0 is spherically symmetrical.

Bohr’s way of looking at the atom, with its
exact paths for the electrons, is not correct, but
it gives a partial view of some of the properties
of atoms and provides a picture that can help to
clarify some of the concepts.

The following is true in Bohr’s model and
remains so in the correct quantum-mechanical
description. The lower the angular momentum,
the more time the electron spends near the
nucleus. An electron in the £ = 0 state spends
the most time near the nucleus where the attrac-
tion is strongest and the energy the lowest. With
higher angular momentum the electron spends
more time further away. The attraction is then
smaller and the energy higher.

This continues to be so as more electrons are
added, with each, as always, going to the low-
est available energy level. Each time we go from
one element to the next, we add a proton to the
nucleus. The corresponding added electron goes
into the state with the lowest value of angular
momentum, i.e., with the lowest value of ¢ that
is available.

The sequence is simple, but only up to Z =
18 (Ar). By this time we have the two elements
with 7 =1, the two elements with » =2 and
¢ =0, the six elements with 7 =2 and £ =1,
the two elements with 7 = 3 and ¢ = 0, and the
six elements with 7 =3 and ¢ = 1. The ener-
gies are different from those of the hydrogen
atom, not only because the nuclear charge is dif-
ferent, but because of the ¢-dependence of the



12.3 Order in the universe: the elements / 285

energy. Nevertheless the sequence is still that of
the energy levels of the hydrogen atom.

The order changes

As we move further along in the periodic table,
the sequence changes. We might have expected to
go on with 7 = 3, £ = 2, but this does not hap-
pen. The low (zero) angular momentum of 7 = 4,
£ = 0 causes the next electron to be so close (on
the average) to the nucleus, hence so strongly
attracted, that this state has the lowest energy,
lower than the state with # =3 and ¢ = 2. It is
therefore the one that is filled first. Only after
that do we get to the electrons with #» = 3 and
l=2.

EXAMPLE 15

(a) Whatis the sequence of energy levels in the argon
atom?

(b) What is the sequence of energy levels in the
potassium atom? The calcium atom?

(c) Sketch the sequence of energy level schemati-
cally for the elements up to Z = 36, showing
the dependence of the energy on 7 and ¢.

(a) Argon is element number 18. In its ground
state its 18 electrons are in the 18 lowest-energy
states. First are the two in the shell with 7z = 1.
Then there are the eight in the shell with 7 = 2,
of which two are in the subshell with ¢ = 0 and
six in the subshell with ¢ = 1. Then there are
eight in the shell with 7 = 3, first two in the sub-
shell with ¢ = 0 and then six in the subshell with
L=1.

(b) Inpotassium (Z = 19) the first 18 electrons have
the same values of # and ¢ as in argon (but
with different energies!). The nineteenth is in the
lowest state with 7 = 4, which is the one with
¢ =0 (and m; = 0).

The sequence continues with calcium, with
the twentieth electron in the second state with
the same 7 and ¢ as potassium (and the other
value of m1). Only then come the 10 elements
in which the subshell with 7 =3 and ¢ =2 is
gradually filled. After that we go back to the
“regular” sequence, with n = 4 and ¢ = 1. That
gets us to Z = 36.

(c)

=1
=2
(=0
(=1
=0
=1
=0
=0
n 1 2 3 4
=2 m=-2,-1,0,1,2, m=+% (10 states)
€=1: m=-1,0,1, m=x% (6 states)
€=0: m=0m==x% (2 states)

The interruption of the sequence of values of
n has remarkable consequences. We have gone
to states with # = 4 before completing the possi-
bilities with 7z = 3. But higher values of 7, as in
the Bohr model, still correspond to larger (aver-
age) radii. Going back to 7 =3 after already
having put electrons in the shell with n =4,
with its larger radius, means that an inner shell,
one with a smaller average radius, is then being
filled.

When atoms combine to form molecules or
solids, it is the outer electrons (the valence elec-
trons) that are primarily involved. Filling an
inner shell doesn’t affect the outside of the atom
very much, so that the way the atom engages
in chemical combinations is not much changed.
If electrons are added to an inner shell as we
go from one element to the next, therefore,
the neighbors in the periodic table are much
more similar to each other than in the more
normal sequence where electrons are added to
the outermost shell. They are called transition
elements.

Another feature of transition elements with
an inner shell that is only partially full is that they
often have extraordinary magnetic properties.
This is because for them the angular momentum
and the magnetic moment do not add up to zero

as they do for filled shells or subshells.
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The first group of transition elements is the
one beyond calcium, from scandium (Z = 21) to
nickel (Z = 28). It includes iron (Z = 26), the
most important magnetic element. A similar sit-
uation occurs several times in the periodic table.
The rare-earth elements (Z = 58 to 71) are chem-
ically so similar to one another that the early
investigators couldn’t even separate them.

The filling of levels continues. Each succes-
sive element has a ground state that represents
the lowest available energy consistent with the
Pauli principle. Each electron can be described
by a solution of the Schrodinger equation (with
the spin component added) in the electric field
that is created by the nucleus and all the other
electrons.

Why does the periodic table end? What
causes elements to cease to exist beyond about
Z = 92? Here we have to leave atomic physics
and go to the question of what holds the nucleus
together. Already for Z greater than 83 the nuclei
are unstable, radioactive. Some have very long
lifetimes, of the order of billions of years, as
is true for two of the uranium isotopes. Others
are continually produced as radioactive daughter
products of these long-lived nuclei. Some ele-
ments with values of Z beyond 92 have been pro-
duced artificially, most notably neptunium and
plutonium (Z equal to 93 and 94), which have
also been detected in small quantities in nature.
There are about 10 more with higher values of
Z, most with extremely short lifetimes, falling
apart mostly by the process of spontaneous
fission.

We have already touched on this question in
the first chapter. The stability of nuclei depends
on the competition between the actions of the
nuclear force and the electric force. The nuclear
force attracts all nucleons to each other, but acts
only between neighboring nucleons. The electric
force acts only between the protons, and repels
them from each other. But its range is longer.
Each proton repels all of the others. As we go to
larger and larger nuclei, eventually the disruptive
electric force wins, and the periodic table of the
elements comes to a natural end.

12.4 Summary

At the end of the nineteenth century it seemed
reasonable to assume that the basic laws of

physics were known. The mechanics of New-
ton and the electromagnetism of Maxwell were
the central parts of what we now call classi-
cal physics. Together with the laws of force for
gravitation, electricity, and magnetism they were
expected to describe and “explain” all of the
phenomena of the physical world.

The discovery of x-rays (1895), radio-
activity (1896), and electrons (1897) pointed in
new directions. The Michelson-Morley experi-
ment (1887) and the discovery of quantization by
Planck (1900) revealed contradictions with the
seemingly established classical laws.

The problem highlighted by the Michelson—
Morley experiment was resolved by the Special
Theory of Relativity in 1905, which resulted
from a fresh examination of the fundamental
nature of space and time. It was another 20 years
before the quantum theory was put on a firm
footing by what is now called quantum mechan-
ics. The result was the modern understanding of
matter in all its forms.

When a body is heated its atoms gain energy
of vibration. Planck showed that only certain
frequencies of vibration are possible, in accord
with the relation E = Nhbf, where N is a whole
number and / is a constant, later named Planck’s
constant.

A photon is a quantum of electromagnetic
energy. It behaves in many ways like a particle.
It has speed ¢, energy hf, and momentum %
In the photoelectric effect a photon of energy
Eyp = bf hits a material and is absorbed by
it. An electron is released if the photon energy
is at least as large as the electron’s binding
energy, Ep. Any leftover energy is given to the
electron as kinetic energy, K : E,, = K+ Ep or
hf = K+ Eg.

The Bohr model of the atom is part of the
“old” quantum theory and leads to some incor-
rect conclusions. It does, however, lead to the
correct spectrum of quantized energies for the
hydrogen atom. It was superseded by quantum
mechanics in 1925.

It was the first model of an atom consist-
ing of a nucleus surrounded by electrons. It was
also the first model to include the quantization
of atomic energies and transitions between its
energy levels. In the transition between levels
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with energies E; and E; the energy difference
E; — Ef = AE can be given to a photon with
energy Epp, = hf so that AE = bf.

The simplest form of the Bohr model is that
of a hydrogen atom with one electron moving
in a circle about a nucleus consisting of a single
proton. There are two relations that character-
ize the model. One is the force equation F. =
kf—; = mé The other is the quantization con-
dition mvr = nh. The combination of these two
relations leads to expressions for the possible val-
ues of the speed, the radius, and the energy of
the atom.

is nrq,

The radius
10~1%m. The energy is n%El, where E; =
—13.6eV. One electron volt (eV) = 1.6 x 1017 ],
n is a quantum number that can take on all

integral numbers from one to infinity.

where r; =0.53 x

In the Compton effect a photon collides
with an electron in an elastic collision, i.e., with
the conservation of kinetic energy and momen-
tum. A new photon is created, with a smaller
energy and hence smaller frequency and larger
wavelength. The wavelength is longer by A\ =
m%c(l —cos 0).

The rest energy of an electron is 0.51 MeV.
(1 MeV = 106 eV). When a photon with energy
greater than twice this amount (1.02 MeV) hits
a material, it can create an electron pair, i.e.,
an electron and a positron. (A positron is
similar to an electron, but with a positive
charge.)

Conversely, when a positron comes to rest
near an electron, the two annihilate, i.e., they dis-
appear, and their energy is given to two photons.
The two photons move in opposite directions in
order to conserve momentum.

When electrons with a single kinetic energy,
K, hit a target and are decelerated, continuous
x-rays are emitted, with energies from zero to
K. In addition, the electrons can raise the energy
of the target atoms to higher levels from which
they then fall back to the ground state with the
emission of characteristic x-rays.

Electromagnetic waves propagate just as
Maxwell showed. They can go through two slits
and recombine to show interference effects. But
the electromagnetic field can interchange energy

only in discrete amounts, as quanta of the field,
called photons.

This synthesis shows that the quantized elec-
tromagnetic field accounts both for the propaga-
tion as electromagnetic waves and for the emis-
sion and absorption of electromagnetic energy as
photons.

In Maxwell’s theory the intensity of an elec-
tromagnetic wave is proportional to the square
of the amplitude of the wave. We can now inter-
pret the intensity in a region as proportional
to the probability of finding a photon in that
region.

The same reconciliation and synthesis of the
points of view of particles and waves as for
electromagnetism applies also to electrons and
to other particles. The “particles” propagate as
waves and show interference effects, as shown
by the groundbreaking experiments of Davisson
and Germer and of G. P. Thomson. The field as-
sociated with them can interchange energy only
in discrete steps, i.e., as quanta whose properties
are those of particles, i.e., of electrons and the
other particles that we know.

Just as the square of the amplitude of an
electromagnetic wave in a region is proportional
to the probability of finding a photon there,
so the square of the amplitude of an “electron
wave” is proportional to the probability of find-
ing an electron there. The symbol that is used for
the matter wave amplitude is ¥ (Greek capital

psi).

The general wave equation is ’227\; = —k2y,
where k = ZT“

For de Broglie waves: k = 27”[) = %, and
p* _ 2mK

- _ 1,2 _ p* 2 _ p*

since K = ymv” = 5, k* = {7 = =, and the
. . 2 g2

wave equation is —f—m% = K.

If, with Schrodinger, we let K =E— U,
we get the Schrodinger equation —%’57\21}4-
UV = EV.

The value of W? in a region is proportional
to the probability of finding the electron (or
other particle) there. For any expression for the
potential energy, U, there are solutions of the
Schrodinger equation only for certain values of
the energy, E, and these are the allowed values
of the energy.
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The Heisenberg uncertainty principle says
that the position and momentum of a particle
cannot both be known exactly at the same time.
The products of their uncertainties AxAp cannot
be less than (approximately) b.

The Schrodinger equation for the hydro-
gen atom leads to the same energy levels as the
Bohr model, E, = M%El, with E; = —13.6¢V.
Other properties, as for example the angular
momentum, are incorrectly predicted by the
Bohr model, but the results derived from quan-
tum mechanics are in accord with all obser-
vations.

In atoms beyond hydrogen there are more
protons in the nucleus and more electrons in the
neutral atom. Each energy level of the atom is
characterized by a different set of four quantum
numbers. The quantum number 7 determines
the energy. The quantum number ¢ determines
the orbital angular momentum, which is equal
to «/€(€ +1)h. £ can be between zero and n — 1.
There are two more quantum numbers, 1,
which can be from —¢ to ¢, and m, which can
be ~|—% or —%.

In the ground state of an atom the energy lev-
els are occupied by electrons, one for each level,
starting from the level with the lowest energy.
The fact that there can be only one electron
occupying a level is called the Pauli exclusion
principle.

With lower values of the orbital angular
momentum (and £) an electron spends more
time near the nucleus. It is then more strongly
attracted to the nucleus and its energy is lower.
Therefore energy levels with lower ¢ are filled
first.

In hydrogen only 7 determines the energy.
In other atoms it is both 7 and ¢. The quantum
number 7 also determines the size of the atom. In
the sequence of atoms in the periodic table of ele-
ments the levels are not always filled in the order
of values of 7. Sometimes inner levels (with lower
n) are left empty and filled only in atoms further
up in the table of elements (with greater atomic
number). This happens for the transition ele-
ments. Transition elements with partially filled
inner levels often have extraordinary magnetic
properties.

12.5 Review activities
and problems

Guided review

1. Photoelectrons are observed to be emitted by
a cesium surface with an energy of 1.5eV. The
work function (the minimum energy to release
an electron) of cesium is 2.1eV. What are the
energy, frequency, and wavelength of the pho-
tons that give rise to this emission?

2. (a) What are the total energy, the kinetic
energy, and the potential energy of a hydrogen
atom in the state with #» = 3, according to the
Bohr model?

(b) What are the energy, frequency, and
wavelength of the light emitted by a hydrogen
atom in the transition from the state with 7 = 5
to the state with n = 3?

3. A photon with energy 1MeV hits a metal
surface. It gives rise to a Compton recoil pho-
ton, which travels in the direction opposite to
that of the original photon. What are the ener-
gies of the recoil photon and of the Compton
electron?

4. A beam of 1-MeV photons hits a cesium
surface.
(a) What is the energy of the photoelectrons?
(b) What are the maximum and minimum
energies of the Compton electrons? What is the
energy of the Compton electron with the most
probable energy?

5. In positron emission tomography the patient
is injected with a chemical substance that con-
tains a positron-emitting isotope. The injected
substance is designed to travel preferentially to
specific parts of the body, e.g., to cancerous
regions.

(a) After a positron is emitted, it slows down
as a result of collisions with the surrounding
atoms. What happens to it after that?

(b) What feature makes it possible to deter-
mine by measurements outside the body where
the positron emission takes place?

(c) Why does the injected material have
to contain positive rather than negative beta
rays?
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6. In a cathode-ray tube, such as those used
in oscilloscopes and in old computer and tele-
vision monitors, electrons are accelerated by
an “electron gun” and then hit a fluorescent
screen.

In one tube the electrons are accelerated
by a potential difference of 20,000 V. What
are the ranges of the energies, frequencies, and
wave-lengths of the x-rays produced at the
screen?

7. One of the simplest models of a nucleus is that
of an energy well whose size is the experimentally
known nuclear size. What is the lowest energy of
a neutron in a one-dimensional well whose size
is3x 10715 m?

8. (a) The solution of the Schrodinger equation

outside a finite well is proportional to ¥ = ¢™9*,

2 . . .
so that ‘27\21' = a?W. Substitute this solution in the
s . 2 2
Schrodinger equation, f—m% = (W —E)¥, and

so find 4 in terms of W, E, and m.

(b) Find the value of a for a neutron in a
well for which W = 100 MeV in an energy level
E = 80 MeV. (Remember to use SI units for the
energies and all other terms.)

(c) What is the ratio of the value of W at
x =10"5 m to that at x = 0?

(d) What is the ratio of the probabilities of
finding the neutron at these two places?

9.

Ry

[ smev

20 MeV

One of the first applications of quantum
mechanics to the atomic nucleus was the success-
ful description of alpha—particle radioactivity.

The diagram shows the cross section of a
three-dimensional energy well as a model for
the nucleus. There is a rectangular part in the
center and a part that decreases as % outside.
The rectangular part represents an approxima-
tion to the attraction of a particle inside the
nucleus as a result of the nuclear force. The % part
represents the electrostatic (Coulomb) repulsion
outside.

Assume that the nucleus consists of alpha
particles inside the well, with the various avail-
able energies.

(a) Qualitatively describe the fate of alpha
particles in the nucleus as described by this model
for the following ranges of the alpha particle
energy inside the well:

(i) less than 20 MeV,

(i) between 20 and 25 MeV,

(iii) more than 25 MeV.

10. (a) Write down the Schrodinger equation for
the electron inside the energy well of Examples 7
and 8.

(b) In what way are the wave functions
similar in the two cases?

(c) In what way are they different?

11. Show that the ground state energy of the
infinite square well (Example 7) is given approx-
imately by the Uncertainty Principle.

12. Define the four quantities L, S, ¢, and s.

13. In hydrogen the states with the same value
of n and different values of ¢ have the same value
of the energy. What is different about them?

14. What are the quantum numbers that describe
the electrons in the ground state of the neutral
lithium (Z = 3) atom?

15. (a) What feature of the figure for Example
15 leads to the fact that the sequence of energy
levels is different for hydrogen and for elements
with Z > 20?

(b) Which level on this diagram represents
the transition elements? Explain.

Problems and reasoning

skill building

1. What is the smallest energy a photon can have
that will allow it to be absorbed by a hydrogen
atom in its ground state?

2. Ultraviolet light causes sunburn and damage
to the skin. What characteristic is responsible for
the fact that this is so for ultraviolet light but not
for visible light?

3. An electron and a neutron travel at the same

speed. What is the ratio of their de Broglie

red

wavelengths, 5=
n
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4. The uranium atom has 92 times as many elec-
trons as the hydrogen atom, but its radius is only
about 3% times larger. Explain.

5. Atoms of a certain element have three energy
levels. They are observed to emit photons with
energies 1 eV, 2 eV, and 3 eV. Draw two possible
energy level diagrams.

6. A hypothetical atom has three atomic energy
levels. They are at —1.5,—2, and —3 eV.

(a) What is its ground state energy?

(b) What is its ionization energy?

(c) What is the lowest energy of photons that
can be emitted by this atom?

(d) What are the energies of photons that can
be emitted by this atom when it is in its ground
state?

7. Suppose an electron could be in a nucleus
whose diameter is 3 x 10~ m. What would the
depth of an energy well have to be to make this
possible? To get an approximate answer, calcu-
late the ground-state energy of an electron in an
infinite well of this diameter.

8. The diffraction pattern on a screen for a cer-
tain setup is the same for an electron beam as for
light whose wavelength is 495 nm. What is the
speed of the electrons?

9. It takes a photon of 1.4 x 10718 ] to break
a certain molecule apart into its atoms. What
are the wavelength and frequency of the photon?
What kind of photon is this?

10. An electron is accelerated through a poten-
tial difference of 300 V.

(a) What is the energy of the electron in eV
and in J?

(b) What is its wavelength?

11. An electron’s kinetic energy is larger by 1%
than %mvz.
(a) What is its energy in eV?

(b) What is its wavelength?

12. A photon hits a hydrogen atom and is
absorbed. The photon momentum is 6.45 x
10727 kgm/s. To which energy level (ie., to
which value of #) is the atom raised from its
ground state?

13. The lowest binding energy of the electrons in
barium (its work function) is 2.48 eV.

(a) What are the threshold energy, fre-
quency, and wavelength of photons that can lead
to the emission of photoelectrons from barium?

(b) What is the range of wavelengths of visi-
ble light that can give rise to photoelectrons from
barium?

14. Sketch the wave functions for each of the
three regions of Guided review Question 9.

Multiple choice questions

1. In the annihilation of a positron and an elec-
tron at least two photons are produced because
of

(a) energy conservation,

(b) momentum conservation,

(¢) E = mc?,

(d) the difference in the masses of the
positron and the electron.

2. Compared to the initial photon, the photon
scattered by the Compton effect has a larger
(a) energy
(b) momentum
(c) frequency
(d) wavelength

3. The number of electrons emitted in the pho-
toelectric effect is proportional to the following
characteristic of the incident light:

(a) intensity

(b) energy

(c) momentum

(d) wavelength

4. A hypothetical atom has three energy levels at
—1.5, =2, and —3eV. The atom, in its ground
state, can absorb photons with the following
energies (in eV):

(a) 1, 1.5, 3

(b) 0.5,1,2

(c) 0.5,1,1.5,2,3

(d)1,1.5,2,2.5,3

Synthesis problems and projects

1. Go to the PhET website and open the simula-
tion Models of the Hydrogen Atom.

Click on Experiment.

Click on the button under “Turn on the
gun.” You will see “photons” moving toward
a “box” that contains hydrogen. Inside the box



12.5 Review activities and problems /291

is a question mark to indicate that we are try-
ing to determine the nature of the hydrogen
atoms.

Click on “Show Spectrometer” and “white”.
Some of the photons that you see moving upward
on the screen are absorbed by the hydrogen in the
box. The hydrogen then emits new photons. The
spectrometer detects the photons that are emitted
by the hydrogen and displays their wavelengths.
Move the slider at the bottom to “fast” so that
the photons accumulate more quickly.

After the spectrum has developed, write
down, as best you can, the wavelengths at which
photons are detected by the spectrometer. Note
that the scale is linear only in the central region,
from 380 nm to 780 nm, i.e., in the visible region.

Click on Predictions.

Here the question mark is replaced by
various models of the atom. For each case
you can observe the behavior predicted by the
model.

(a) Click on the “Billiard Ball model”: the
atom is a hard ball without any internal struc-
ture. The photons (or any other particles) make
only elastic collisions. That means that the total
kinetic energy is the same before and after the
collision.

Describe why there is or is not any radiation
emitted according to this model.

(b) In the “Plum Pudding Model” electrons
are embedded (like plums or raisins) in a pudding
(or cake) of positive charge. The electrons can
be given some energy to move back and forth in
the atom. They would radiate this energy away,
but not with the spectrum of discrete wavelengths
that are registered by the spectrometer.

(c) Rutherford showed that the positive
charge is concentrated in a tiny nucleus rather
than spread out throughout the atom. (See the
simulation “Rutherford Scattering” in the next
problem. There is also a description of nuclei in
Chapter 1 and at the beginning of Chapter 13.)

Move the slider to its slowest position. Click
on the “Classical Solar System” model. Click on
“Show electron energy level diagram.” Here the
electrons move around the nucleus as do plan-
ets around the sun. Since the electrons are
accelerated (a = %) the electromagnetic theory
predicts that they radiate energy rapidly. (To
reset, go to an earlier model.)

What happens to the atom? Why?

(d) Now click on the “Bohr model”and
look at the prediction. How did Bohr deal with
the failure of the Classical Solar System model?
What does his model say about the stability of
the atom? What does it indicate quantitatively
about the angular momentum of the atom? What
are the two relations that together let you cal-
culate the energy levels of the atom? How can
you calculate the energies that may be emitted
by the atoms from the energy levels? How can
you calculate the frequencies and wavelengths of
the emitted radiation?

(e) Does the de Broglie model change any-
thing that we said in the previous paragraph (d)
about the angular momentum and the energy
levels? What was de Broglie’s contribution?

(f) Which quantity do the Bohr and de
Broglie models describe correctly? Which do they
describe incorrectly?

(g) What are the predictions of the
Schrodinger model about the energy levels?
About the angular momentum?

(h) List some other successes that the
Schrodinger model has with quantities that the
other models either describe incorrectly or can-
not deal with.

(i) Look at the line on the spectrum with the
largest wavelength in the central region (where
the scale is linear). It corresponds to a transition
between two energy levels of the atom. Try to
identify the values of 7 of the two energy lev-
els. (You will have to guess what the values are
and then calculate to see whether you guessed
correctly.)

Do the same for the level pairs that give rise
to the radiation at the next lower wavelengths.
(Your experience with the first pair should make
this easier.)

2. Go to the PhET website and open the simula-
tion Rutherford Scattering.

Select “Rutherford Atom” from the tabs at
the top. You see a gold atom with its 79 protons
and 118 neutrons.

“Turn on the gun” by clicking on the “0” on
the left. Alpha particles come from the bottom
and are deflected by the nucleus. Click on “Show
traces” to see their paths.

Change the alpha-particle energy by mov-
ing the slider from “min” to “max.” What
changes do you observe? Explain.
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Change the target nucleus to ‘2‘8 Ca (20 pro-
tons and 24 neutrons). What change to you
observe? Explain.

Select “Plum Pudding Atom” from the tabs
at the top. Turn on the gun and “Show traces.”
What do you observe? Explain your observa-
tion and contrast it with the observations for the
Rutherford Atom.

The atom is about 14cm across on the
screen. What would be the order of magnitude
of the diameter of a gold nucleus on the screen
to the same scale?

3. Describe positron emission tomography. (Try
the article in newworldencyclopedia.org.)

4. What are the energies, according to the Bohr
model, of a singly ionized helium atom, i.e., an
alpha particle with a single atomic electron?

5. A muonic hydrogen atom is one in which the
atomic electron is replaced by a negative muon.
The negative muon has the same charge as the
electron, but 207 times the mass. The other
properties of the two particles are the same.

What, according to the Bohr model, are the
allowed energies?

6. Bohr suggested that truth and clarity are com-
plementary. Explain what he may have meant,
with examples.



