
CHAPTER 2

Some Tools of the Trade:
Numbers, Quantities, and Units

The language of physics: symbols and formulas
Positive and negative numbers
Zero
Numbers, huge and tiny: powers of 10
Precision: Significant figures
Quantities and units
Ratios and proportional reasoning
Tables, graphs, equations, and functions
Right-angled triangles

Once more the four forces, this time quantitatively
The gravitational force
The electric force
The other forces

So far we have used words, almost exclusively. We have talked about size, force,
and energy, but mostly without using numbers, although a few times they almost
forced themselves on us. But most of the time we have to know how big a
distance is, or a force, or any other quantity, and that requires numbers and
units. We also want to describe relations between different quantities, and do
that with symbols, such as E for energy, and M for mass.

All of that is mathematics. Mathematics is the language in which the ideas,
facts, and relationships of physics are best expressed. Sometimes it’s just short-
hand. It is much easier to write v = 32 m/s than “the velocity is thirty-two meters
per second,” or v̄ = Δx

Δt , rather than “the average velocity of an object is equal
to the displacement along the x-axis divided by the time it took to make that
displacement.”

Sometimes the relationships are more complex, like F = Ma: “the force, or,
if there is more than one, the sum of all the forces acting on an object, is equal
to the mass of the object multiplied by its acceleration.”

You can see that just as a way of writing things down in shorthand notation
with symbols like v and x, math is very helpful. But it does more than that. It
lets us write down relationships between different quantities, and change them
so that they lead to other relationships. To do the same with words would be
cumbersome even for the simplest ones, and close to impossible for others.
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Mathematicians can make up their own rules. All that is required is that
they are not in conflict with one another, i.e., that they are internally consistent.
Physics, and more generally science, does something quite different. It describes
the world as it exists.We can make up rules and laws, but more than consistency
is required of them.The more severe test is whether they help us in the primary
task, the description of the dynamic, interacting, ever-changing, endlessly new
world that we observe.

2.1 The language of physics:
symbols and formulas

Look at the equation y = 3x2. It could be seen
as a “formula,” or “recipe” that expresses the
quantity y in terms of the quantity x: when x =
1, y = 3, when x = 2, y = 12, and so on. Given x
we can follow the rules and find y. A physicist is
more likely to see it as a relationship, for which
the mathematical equation provides the descrip-
tion. The equation shows how y depends on x.
In other words, it shows y as a function of x. It
shows that y is proportional to x2, and brings to
mind a picture of the graph of y against x that
shows how the two quantities are related.

Some symbols stand for quantities, like dis-
tance, L, and their units, like meters, m. Others
describe a procedure or operation, like plus (+)
or times (×), or a relation like equals (=) or “is
proportional to” (∝).

A page with unfamiliar symbols does not
give us understanding or comprehension. It is like
a page of musical notes that comes alive to the
musician as he or she looks at it, but remains
hidden to those who do not know musical nota-
tion. Moreover, to know what each written note
means is far from knowing what an orchestral
passage sounds like. It is the same with a page of
physics filled with mathematical notation. Our
intention is to help you see, follow, and “hear”
what is being described.

When we speak or write we use the “parts
of speech,” the nouns, verbs, adjectives, and so
on. Their proper use leads to understanding and
communication, while their improper use can
lead to confusion. Similarly, to “speak physics”
we need mathematical components, such as num-
bers (positive, negative, and zero), graphs, pro-
portionalities, and equations. In the following
sections we review some of the mathematical
procedures and ideas that we will use to com-
municate.

Positive and negative numbers

In physics we need to quantify. We ask How
much? How far? How large? The answers are
expressed in numbers. In many cases we want to
distinguish between opposites such as right and
left, past and future, speeding up and slowing
down. We do that by using positive and negative
numbers.

Here is an example. I walk six steps to the
right and then four steps to the left. How far am
I from where I started?

We let the starting point be represented by
zero, “to the right” by positive numbers, and
“to the left” by negative numbers. We can then
describe the motion mathematically as (+6 steps)
+ (−4 steps) = (+2 steps). We use plus and minus
signs, but we use them in two entirely different
ways. One (within the parentheses) is to indicate
which way is to the right and which to the left.
The other (between the parentheses) is to indicate
the operation of addition.

To distinguish between the two uses we can
reserve “plus” and “minus” for the operations
of addition and subtraction, and use “positive”
and “negative” to indicate positive and negative
numbers. Our relation then reads “positive six
steps plus negative four steps equals positive
two steps.” “Positive” and “negative” tell us
what kind of numbers we have, and “plus” and
“minus” tell us what we do with them.

The choice of which direction to call positive
is up to us. If we decide to let “to the left” be
positive, we would write (−6 steps) + (+4 steps)
= (−2 steps). Both choices lead to the same result,
namely that we end up two steps to the right.

Sometimes we don’t care whether a number
is positive or negative; we just want to know how
big it is. That’s its magnitude. The magnitude of
both +15 (positive 15) and −15 (negative 15) is
15. When we look at the speedometer in a car
we see how fast the car is going. That tells us its
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speed: the speed is 30 miles per hour. To incor-
porate the direction, we need the velocity: the
velocity is 30 miles per hour, north. The speed is
the magnitude of the velocity.

EXAMPLE 1

A B
3 units 2 units 3 units 5 units

Zahra and Mona pull in opposite directions on a cart
(A) that is initially at rest. Laila and Yasmine also pull
in opposite directions on a second identical cart (B).
The figure shows the forces that they apply in force
units.

(a) Represent these actions by mathematical state-
ments, using numbers.

(b) In which direction does each cart start to move?

(c) Which cart is being pulled with the greatest net
force?

Ans.:
(a) Let the positive direction be to the left.

Cart A: (+3 units) + (−2 units) = (+1 unit).
Cart B: (+3 units) + (−5 units) = (−2 units).

(b) Cart A starts to move in the positive direction,
to the left, as a result of the net pull (or force) to
the left of one unit.

Cart B starts to move in the negative direc-
tion, to the right, as a result of the net pull (or
force) in that direction of 2 units.

(c) The size or amount of the net force on cart A is 1
unit, the size of the net force on cart B is 2 units.
Cart B is being pulled with twice the net force
of cart A. The negative sign tells us the direction
and the number tells us how hard the pull is.

Zero

Zero can have several meanings. It can mean the
absence of a quantity, as in “the car’s speed is
zero.” Here the car has no speed at all. It is not
moving.

A second meaning is for zero to denote a
starting point. From this point we can move in
one direction or the other, or the temperature can
change up or down. More generally, zero can be
a position, or a temperature or the value of some
other quantity, from which we count positions,

temperatures, etc. This is what we do when we
use the Celsius scale of temperature, where zero
degrees refers to the temperature at which water
freezes.

A third use of zero is to denote a balance or
neutral condition between opposites. Two equal
forces in opposite directions produce a zero net
force. A neutral atom has just as many protons
(with their positive charge) as electrons (with
their negative charge). Its net electric charge is
zero.

EXAMPLE 2

You go to bed and the temperature is 18◦C. Over-
night the temperature drops by 18◦C.

Write a mathematical expression for what hap-
pens, first in the C-scale and then in the F-scale. What
is the temperature in the morning and in the evening
in degrees Celsius and Fahrenheit?

Ans.:
t = (18◦C) + (−18◦C) = 0◦C. The final temperature
is 0◦C.

The size of a degree C is 9
5 times the size of a

degree F. The magnitude of the drop in temperature
is therefore (18)( 9

5 ) = 32.4 Fahrenheit degrees.
0◦C or 32◦F is the freezing temperature. This is

also the morning temperature. The evening tempera-
ture of 18◦C is equal to 32◦F + 32.4◦F = 64.4◦F.

The final (morning) temperature is 0◦C. It is
also the evening temperature plus the change in
temperature, (64.4◦F) + (−32.4◦F) = (32◦F).

EXAMPLE 3

Two teams are engaged in a tug of war. Each team
pulls on the rope with 25 units of force. The rope
does not move. Write a mathematical description of
the forces with which the rope is being pulled.

Ans.:
Let the positive direction be to the right. (25 units) +
(−25 units) = (0 units).

The rope is being pulled from both sides as
each team exerts a force, but the net force on it is
zero.

EXAMPLE 4

The atomic number of sodium is 11. In its most
common ionized state each atom loses one electron.
Represent the charges of the neutral atom and the ion
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using a mathematical description of the numbers of
electronic charges.

Ans.:
The proton and the electron have charges of the same
magnitude, e, positive for the proton and negative for
the electron. The neutral sodium atom contains 11
protons and 11 electrons. The net amount of charge
is (+11e) + (−11e) = 0.

When the atom is ionized and loses one electron,
the negative charge is (−10e). The amount of charge
of the ion is then (+11e) + (−10e) = (+1e).

(The number of protons in a sodium nucleus
is 11, regardless of whether the atom is neutral or
whether it has gained or lost electrons.)

Numbers, huge and tiny:
powers of 10

When we use atomic or astronomical distances
we need to use very small and very large numbers.
It is helpful to use a notation that avoids long
strings of zeros.

We can write the number 100 as 102 and the
number 1000 as 103. The “2” and the “3” are
called “exponents.” You can think of them as the
number of steps that the decimal point is shifted
to the right of the “1.” This way of looking at
the exponent also works in the other direction:
0.01 is written as 10−2, where the negative sign
means that we move the decimal point to the left
from its position after the “1.”

To multiply two numbers written in this
power-of-ten notation we need to add the expo-
nents: 100 × 1000 = 100, 000, can be written as
102 × 103 = 105.

Since 0.01 is equal to 1
100 , we see that 10−2

is equal to 1
102 .

We can extend the notation to other num-
bers by writing 6.2 × 103 instead of 6200. Again,
the exponent gives the number of steps that the
decimal point is moved, either to the right if the
exponent is positive, or to the left if it is negative.

EXAMPLE 5

The earth is about 150,000,000,000 m from the sun.
Pluto is about 6,000,000,000,000 m from the sun.

(a) What is the ratio of the distances?

(b) What is the radial distance from Pluto’s orbit to
the orbit of the earth?

Ans.:
Sun to earth: 1.5 × 1011 m.

Sun to Pluto: 6.0 × 1012 m.
Ratio: 6.0×1012

1.5×1012 = 6.0
1.5 × 10(12−11) = 4.0 × 101 =

40, so that Pluto is 40 times as far from the sun as is
the earth.

Difference: 6.0 × 1012 − 1.5 × 1011. This is eas-
iest if both exponents are the same: 6.0 × 1012 =
60 × 1011 and 60 ×1011− 1.5 × 1011 = 58.5 × 1011,
which can be rounded off to 58 or 59 × 1011 m.

Precision: significant figures

You may describe the distance from the edge of
a desk to the nearest wall as 5 feet and 4 inches,
which is about 5.3 feet. But if someone tells you
that 5 feet 4 inches is really 5.33333 feet, with the
threes going on forever, you have to ask yourself
how many of these threes to write.

It is true that 4 inches equal 1
3 ft, or

0.333. . . ft, with an unlimited number of threes,
but we are looking at the results of a measure-
ment, not at an abstract number. To write down
that third “3” implies that we know that it is
not a “2,” a “4,” or some other number. If we
really know, because the distance was measured
sufficiently precisely, then this number should
be there, because it is significant. Otherwise it
should be left out.

If we write the distance as 5.3 ft, we imply
that it is bigger than 5.2 feet and smaller than
5.4 feet. That’s not a bad measurement. It says
that we know the distance to about one part in
53. That’s about two parts in 100, or 2%. If
we write 5.33 ft, the implication is that it is not
5.32 or 5.34, so that we know the distance to
about one part in 533, or 0.2%. You have to ask
yourself whether you really know the distance
that well.

A calculator can give numbers with many
figures, and you have to decide how many of
them are significant. If the number is the result
of a measurement, the number of significant
digits depends on the precision of the measure-
ment. It is most often three figures or less. We
usually “round” the last digit that we keep, either
down, by leaving out the next one, if it is less than
5, or up, by increasing it by 1 if it is 5 or more.
5.333 becomes 5.33 and 5.336 becomes 5.34.

Sometimes we only know the exponent, that
is, we may know only that a number is 1023, and
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not 1022 or 1024. We then say that we know
the order of magnitude.

There are rules about what happens to the
number of significant figures when numbers are
combined. For example, if you multiply or divide
two numbers, each with three significant fig-
ures, the result should also have three significant
figures. In general, the least precise number in
a combination will determine how precise the
result is. On the other hand, if you are not quite
sure, it is better to keep an extra significant fig-
ure until the end of a calculation, and only then
to round it. Rules are useful, but common sense
may also be necessary.

For simplicity we will assume that the quan-
tities in our examples and problems are known to
three significant figures unless we say something
different. In other words, when we say 2 m, it
will imply 2.00 m, and when we give a force as
5.3 N, that will imply 5.30 N. The calculations
and answers should therefore also be carried out
to three significant figures.

EXAMPLE 6

You have a rope that is 52.3 feet long, which you
want to cut into three equal parts. How long should
each piece be?

Ans.:
You put the numbers in your calculator and get
52.3

3 = 17.43333333 ft. You now look at the appro-
priate precision, and see that the length of the rope is
given to three significant figures. You therefore round
the answer to 17.4 ft. You check that this is reason-
able by considering the precision of the measurement.
0.1 ft is about an inch, and this seems about right for
the precision of the measurement of the length of a
50 ft rope.

Quantities and units

We have already talked about energy. You know
that energy is what you get from the gasoline that
you put in the car and from the electric company
when you plug in a light. It is what you get from
the food you eat and what you use when you
lift this book. Another term that we have used is
force. It describes our interaction with a wagon
when we pull it and with a wall when we push on
it. The baseball bat or the tennis racket interacts
with a ball by means of forces, and so do you
and the earth when you jump, and even when
you stand still.

Terms like force and energy are used in
everyday language, but they are given much more
precise meanings in science. We need more than
a general idea of what we are talking about. We
want to be quantitative, and for that we need
definitions that provide recipes for measuring the
various quantities. Only then can we say how big
a force is and how much energy is required for a
particular task.

We will talk about the connections between
distance, force, and energy that lead to their
precise definitions in the next chapters. In the
meantime we will continue to use them, since we
already have a rough idea of what these quanti-
ties are. Let’s add one more, the mass. It is the
property that tells you how hard it is to get an
object to change its velocity. From it you can
also see how hard the earth pulls on it. That’s
the weight of the object.

To measure something we need units.
Inches, meters, and miles are among the units
that are used to measure distance, and only when
we know how big each is can we make sense
of what is meant by 3 inches, or 5 meters, or
10 miles. If we know how many kilometers are
equivalent to 1 mile, we can change from describ-
ing a distance as 15 miles to saying that it is some
number of kilometers.

For energy we need other units, such as the
kilowatt-hour, the calorie, the joule, and the
electron-volt. These are among the units that let
us describe and compare the energy needed to lift
this book from the floor to the table, to keep a
light on for three hours, or to remove an electron
from a hydrogen atom. They also let us describe
how much energy a person uses in a day, or how
much all of us in this country, or on the whole
earth, use in a year.

We start by comparing different units for the
same kind of quantity, for example distance. It is
helpful to have a fundamental unit, and then to
express the others in terms of it. Most of the time
we will use the units of the “SI System” (from the
French Système Internationale) as our fundamen-
tal units. The SI unit for distance is the meter, m,
but distance can also be measured in many other
units (miles, inches, centimeters, etc.). Other SI
units include the joule, J, for energy, the newton,
N, for force, the kilogram, kg, for mass, and the
second, s, for time.

Although we will wait with the exact def-
initions of energy, force, and mass, we can
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anticipate some of what we will get to. The kilo-
gram is the fundamental (SI) unit of mass. The
newton is the SI unit for force. The weight of
an object whose mass is 1 kg (the force that the
earth exerts on it near the earth’s surface) is about
2.2 pounds, or about 9.8 N.

Suppose you want to express a distance of
6.71 m in feet, using the fact that 1 m = 3.28 ft.
The easiest way is to multiply the 6.71 m by a
fraction that is equal to one, with the meters in
the denominator and the same distance, in feet,
in the numerator. 6.71 m is the same as 6.71 m

1 ,
so that we can write ( 6.71 m

1 )( 3.28 ft
1 m .) Since units

that appear both on the top and on the bottom
cancel, the meters cancel, and we are left with
(6.71)(3.28) ft, or 22.0 ft.

EXAMPLE 7

How long (in days and years) would it take you to
count 100 million one-dollar bills if you counted them
at the rate of two per second?

Ans:
(2 $

s )(t) = 108, or t = 0.5 × 108 s.

(0.5 × 108 s)
1 h

3600 s
1 d
24 h

= 0.5 × 108

(3600)(24)
d = 579 d

= 579
365

y = 1.6 y

At this rate it will take 1.6 years!

Ratios and proportional
reasoning

The ratio of the circumference of a circle to its
diameter is π. This is so regardless of the size of
the circle. (π is a number with an infinite number
of decimal places. To three figures it is 3.14.) We
can write c

d = π, and c = dπ, where c is the cir-
cumference and d is the diameter. We can also
write “c is proportional to d” (c ∝ d), which
means that c is equal to a constant times d. If
d is multiplied by 2 (or some other number) then
c is also. This is an example of “proportional
reasoning.”

Here is another example. The energy of
motion (or “kinetic energy,” K) of a car is 1

2 mv2,
where m is its mass and v is its speed. What
happens to K when v doubles?

When the speed has the value v1, K has the
value K1, equal to 1

2 mv2
1. When the speed is v2,

the energy is K2 = 1
2 mv2

2. K2
K1

= 1
2 mv2

2
1
2 mv2

1
, which is

equal to
v2

2
v2

1
or ( v2

v1
)2. When the speed is doubled,

v2
v1

= 2, and ( v2
v1

)2 = 4, so that the energy is then
four times as large.

More simply, we can write K ∝ v2 (K is pro-
portional to v2) since the mass does not change.
This shows that when v is multiplied by some
number (here 2), K is multiplied by the same
number squared. Proportional reasoning allows
us to say this without knowing the values of m,
v, or K. The equation K = 1

2 mv2 describes the
relation between K and v. The proportionality,
K ∝ v2, is part of that relation. It allows us to see
how K changes when v changes.

Suppose that P = ρgh, where ρ and g are
constant. We don’t need to know anything about
ρ and g to see how P and h depend on each other:
we see that P ∝ h. If h is tripled, so is P. Propor-
tional reasoning allows us to predict the effect
on P of a change in h, while all other quantities
remain unchanged. In this relation P is the pres-
sure in a liquid whose density is ρ (greek rho), at
a depth h, and g is the weight in newtons of a
body whose mass is one kilogram, but regardless
of what the letters represent, as long as ρ and g
are constant, P ∝ h.

EXAMPLE 8

An approximate relation between the force of air
resistance, Fa, on a moving car and its speed v is
Fa = kv 2. k is a constant quantity that depends on
the size and shape of the car. The car speeds up from
40 miles per hour to 60 miles per hour. By what factor
will the force of air resistance increase?

Ans.:
Fa ∝ v2. v increases from the initial speed vi = 40
mph to the final speed vf = 60 mph, while the force
of air resistance changes from its initial value Fai

to its final value Faf .
Faf
Fai

= kv2
f

kv2
i

= ( vf
vi

)2 = ( 60
40 )2 =

(1.5)2 = 2.25. The final value Faf is 2.25 times the ini-
tial value Fai, i.e., the force of air resistance increases
by a factor of 2.25.

Tables, graphs, equations,
and functions

The results of an experiment or an observation
can be shown in a table of data. The table might
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show values of some quantity x, and for each
value of x the corresponding value of some other
quantity y. We can also represent the data on
a graph of y against x. The table and the graph
show how y changes when x changes. They show
y as a function of x, or in shorthand notation they
show y(x), pronounced “y of x.”

We try to find patterns in the data. For exam-
ple, the graph might be a straight line, a parabola,
or some other shape, which we can then describe
by an equation.

EXAMPLE 9

You skate down the sidewalk past a long building
with regularly spaced windows. You count the num-
ber of windows that you pass. You can then make a
table. Let x be the time in seconds and y the number
of windows passed.

x y
time in s windows passed

0 0

1 4

2 8

3 12

4 16

5 20

(a) Make a graph of the data.

(b) Represent the data by an equation.

(c) Why is is it physically meaningful to replace the
data with a function?

Ans.:
(a)

0 1 2 3 54
x

y

0

10

20

(b and c) You can draw a line that passes through
the points. What do the parts of the line between
the points represent? You didn’t count any-
thing there, but the line tells you what the
measurements would be if the same trend is
followed.

0 1 2 3 54
x

y

0

10

20

You can express the line on the graph by an
equation: the equation that describes the line is
y = 4x.

Each of the three descriptions (the table, the
graph, and the equation) describes the same
data. Each gives its particular perspective. Each
is a different representation. Each illuminates
what is happening in a different way.

EXAMPLE 10

x (days) y ($ spent)

0 0

1 5

2 11

3 20

4 23

5 31

6 35

You start the month with $100 budgeted for eat-
ing out and entertainment. The table shows your
expenses as they accumulate day by day for the first
week.
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(a) Make a graph of the data.

(b) Write the mathematical function that describes
the line on the graph.

Ans.:
(a)

0 2 4 6 108

y
($ spent)

0

10

20

30

50

40

x   (days)

The points on the graph lie quite closely, but
not exactly, along a straight line. By drawing a
straight line through them you assume that the
relationship is linear. The line represents your
estimate of the “best fit” to the data. It aver-
ages over the deviations from the straight–line
relationship.

(b) The graph shows the amount of money spent
(y) plotted against the number of days that have
passed (x). It shows y as a function of x, or y(x).
The equation of the line that we have drawn is
y = 6x. The slope, the number of dollars spent
per day, is 6 $/day. It is positive, showing that y
increases as x increases.

Alternatively we can use the same data to plot
the amount of money that remains against the
number of days:

0 2 4 6 8

x  (days)

y
($ left)

0

20

40

60

100

80

The line starts with $100 at time 0 and
decreases by $6 each day, on average. The
equation of the line is y = 100 − 6x. This time

the slope is negative, equal to −6 $/day. The
negative sign shows that y is decreasing as x
increases.

Both graphs give a description of the same
data, but they do so differently. Each is a
different representation.

One value of the different representations is
that they allow us to find patterns: the skater
passes four windows in each second; the money
is spent at the constant rate of six dollars
per day.

A second value is that they allow us to
see what happens at points in between the
recorded data. You can look at the graph and
see how many windows you have passed after
3.5 seconds. This is called interpolation. You
can also see how many windows you would
pass if you kept going for 10 seconds. This is
called extrapolation. It gives the correct answer
only if the pattern continues unchanged. In this
example it will do so only if the windows con-
tinue to be equally spaced for a sufficient dis-
tance, and if you continue skating in exactly the
same way.

For the example in which you spend money
at the rate of six dollars a day, you can extrapo-
late to see when you will run out of money if you
continue to spend it at the same rate.

What is the mathematical description of this
question? The equation is y = 100 − 6x, where
y is the money left and x is the number of days.
You can then ask what x is when y is zero.

The equation then becomes 0 = 100 − 6x,
and it leads to the solution 6x = 100, or x =
100
6 = 16.7 days. This shows that with the given

rate the amount of money left will go to zero
in 16.7 days. You can conclude that unless you
change the rate at which you spend money you
will not be able to go out to eat or go to a movie
for almost half of the month.

Here is another example. A mouse comes
out of its hole and moves along the floor in
a straight line. That’s the event. That’s what
happens. The words, spoken or on paper, are
one representation. The drawing, and a photo-
graph, are other representations. So are graphs
of the mouse’s position or speed as a function
of time. Each representation gives some partial
information about what happens.
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Here is a table of measurements of the
mouse’s position. x is the distance from the start-
ing point at the mouse hole, in centimeters. t is
the time in seconds, in half-second time intervals,
measured from the moment the mouse emerges.

x (cm) t (s)

0 0

0.5 26

1 52

1.5 61

2 64

2.5 65

3 63

3.5 59

4 53

4.5 51

5 51

0 1 2 3 54
t (s)

x
(cm)

0

80

60

40

20

The graph shows the position of the mouse
as a function of the time. It shows the data, i.e.,
the results of measurements. To make this graph,
a number of decisions had to be made. What
quantities do we plot on each axis? What are the
units on each axis? What is the scale, i.e., how
far apart are the numbers on each axis? Where is
each quantity measured from, i.e., where is each
of the quantities equal to zero? Is that also the
place where the graph has its origin, i.e., where
the axes (plural of axis) cross? Each of these deci-
sions affects the way the graph looks. Together
they describe the coordinate system. The facts
(the data) are not changed. But the way the facts
are represented by a graph is different for each
coordinate system.

The graph starts out as a straight line. Dur-
ing this part of its travel the mouse covers equal
distances in equal times. In other words its speed

is constant: 26 cm in the first half second and 26
cm in the second half second, or 52 cm/s. It then
slows down, going only 13 cm (from x = 52 cm
to x = 65 cm in the next 1.5 s.

What happens then? We see that x, the dis-
tance from the starting point, decreases during
the next two seconds. The mouse is moving back
toward the starting point. During the last half
second x does not change. The mouse is not
moving.

0 0.2 0.4 0.6 1.00.8
t (s)

x
(cm)

0

40

50

30

20

10

Δt
Δx

Now zoom in on the part of the graph on the
left, near the origin. There the points lie along
a straight line. The small triangle represents a
change along the x-axis that we call Δx (capital
Greek delta) and a change along the t-axis that
we call Δt. Here Δx is 10.4 cm, and Δt is 0.2 s.

The ratio Δx
Δt is the slope of the line. Here

it is 10.4
0.2 cm/s, or 52 cm/s. If the graph describes

physical quantities (not just numbers), each axis
must include units. Here they are cm and s. The
slope has units of cm/s. For this line the slope is
52 cm/s. We see that the slope of the graph of
x(t) is the velocity.

On the graph of y(x), y is a function of x. Just
numbers are given this time, no units. The graph

Δx
Δy

y

x

b

1 2 3 4 50

5

4

3

2

1

0
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is a straight line. The place where the line crosses
the y-axis is called the y-intercept. The symbol
used to represent the y-intercept is b. Here it is
1.5. Δy is a change parallel to the y-axis (here
0.5), and Δx is a change parallel to the x-axis
(here 1.0). The slope of the line is Δy

Δx . The symbol
used for the slope is m. Here it is 0.5. We can
choose a different triangle of Δx and Δy along
the line, but their ratio, the slope, remains the
same. In fact, we could define a straight line as
one whose slope is constant. The equation of this
line is y = 0.5x + 1.5. In general, the equation of
a straight line is y = mx + b.

The main part of an equation is the equal
sign. It tells you that what is on the left of it,
the left-hand side of the equation (lhs), has the
same value and sign as what is on the right-
hand side (rhs). 3 + 8 = 4 + 7, for instance. Most
often there are not just numbers, but also sym-
bols, as in 3x = 12. Now x has to be equal to
4, or the lhs is not equal to the rhs. We can see
what x must be by dividing each side by 3. This
leaves x by itself on the left, and 12

3 or 4 on the
right.

We have changed both sides in the same way
by dividing each side by the same number, 3. We
can also multiply each side by the same number
or quantity, add the same thing to each, or sub-
tract the same from each side. In each case the
lhs will still be equal to the rhs. The equal sign
will still hold.

Equations can be much less complicated
than expressing what they say in words. In fact,
symbols and equations give us a marvelous short-
hand way to express complex relationships and
to describe a great deal of information.

Each equation describes a relationship: the
lhs is equal to the rhs. We can change it in a
lot of ways as long as each change preserves
that basic relationship. Often we want to make
these changes, manipulate the equation, so that
one quantity (the unknown) is on the lhs, with
other quantities, presumably known, on the rhs.
If we can do this, we say that we have solved the
equation.

EXAMPLE 11

The sales at a lemonade stand can be described by the
function y = −(x − 2)2 + 9, where x is the number of
hours of operation after opening and y is the rate of
sales in cups per hour.

(a) Make a table of the values of x and y at hourly
intervals.

(b) Plot the points from your table and sketch y(x).

(c) After how many hours does the number of cups
per hour go to zero?

Ans.:

(a)

x (h) y cups
h

0 5

1 8

2 9

3 8

4 5

5 0

(b)

t (hours)

      sales
(cups/hour)

2 40
0

4

8

(c) The rate is seen to go to zero after 5 hours.
From the equation: when y = 0 it reduces to

0 = −(x − 2)2 + 9, or (x − 2)2 = 9, and, if we
take the square root of each side, x − 2 = ±3,
so that x = 5 or −1.

Only positive values of t are appropriate
here. But you can see on the graph that if the line
is continued to the left, it crosses the x-axis at
x = −1. This shows that it is not enough to fol-
low the mathematics blindly. The solution has
to be looked at to see whether it represents the
physical situation correctly.

Right-angled triangles

Positive and negative numbers are sufficient to
describe positions, distances, and directions as
long as we stay along one line, i.e., in one
dimension. On a plane (in two dimensions) or
in three-dimensional space we need further tools.
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For example, we often make use of the properties
of right-angled triangles.

The figure shows a triangle with one right
angle (90◦) and another angle, θ. One of its sides
is marked “O” (for opposite) because it is oppo-
site the angle θ and one side is marked “A” (for
adjacent) because it is adjacent to this angle. The
third side is the hypotenuse, “H,” whose length
is given by the theorem of Pythagoras (or the
Pythagorean theorem) A2 + O2 = H2.

Η3Ο1

Η1

Ο2

Η2

Ο3

Α3

Α2

Α1

The ratio O
H is the same as long as θ does not

change. ( O1
H1

= O2
H2

, etc.) This ratio is called the

sine of the angle θ: sin θ = O
H . The ratio A

H is the
cosine of θ (cos θ). The ratio O

A is the tangent:
tan θ = O

A .
If you divide each term in the relation

A2 + O2 = H2 by H2, you get A2

H2 + O2

H2 = 1, or
sin2 θ + cos2 θ = 1, for any angle θ.

EXAMPLE 12

You swim from shore for 100 m at an angle of 30◦

with respect to the coastline.

(a) How far are you from the shore when you stop?

(b) If you swim directly back to the shore, how far
will you then be from where you started?

Ans.:

30 o

b

a

100 m

The triangle shows the initial part of your path
of 100 m, and the second part, to the shore, which is
marked b, as well as the distance from there back to
the starting point along the shore, which is marked a.

(a) sin θ = Opposite
Hypotenuse = b

100 . b = 100 sin θ = 50 m.

(b) The distance back is a.
cos θ = Adjacent

Hypotenuse = b
100 . b = 100 cos θ = 87 m.

2.2 Once more the four forces,
this time quantitatively

The gravitational force

The relation that describes the gravitational force
was first published by Isaac Newton in 1687
in his book Philosophiae Naturalis Principia
Mathematica, “The Mathematical Principles of
Natural Philosophy,” usually referred to as Prin-
cipia. It is known as Newton’s law of universal
gravitation:

Fg = G
M1M2

r2 (2.1)

It describes the gravitational force of attrac-
tion between any two bodies with masses M1 and
M2, separated by a distance r. G is a proportion-
ality constant. In the SI system, where M is in kg,
r in m, and Fg in N, G is equal to 6.67 × 10−11

Nm2/kg2.
The law is for small “point” objects, but we

will see later that it holds also for large spheri-
cally symmetric bodies if for r we use the distance
between their centers.

EXAMPLE 13

Calculate the gravitational force between the earth
and a 1 kg object at its surface.

Ans.:
The first mass, M1, becomes the mass of the earth,
which we can write as Me, equal to 5.97 × 1024 kg.
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M2 is the 1 kg mass. For r we have to use the dis-
tance from the center of the earth to the mass at
the earth’s surface. This is the radius of the earth,
Re, equal to 6.38 × 106 m. Then Fg = G (Me)(1)

R2
e

, or

(6.67×10−11)(5.97×1024)
(6.38×106)2

, which comes out to be 9.78 N.
Instead of calculating the answer directly it is help-
ful to collect the exponents separately. Here this is
(6.67)(5.97)

(6.38)2
× 10−11+24−12, which is 0.978 × 101 or

9.78 N as before. This makes it easy to check the
exponents and to see whether the answer is in accord
with a rough estimate. Because the earth is not a
homogeneous sphere, nor exactly spherically sym-
metric, the magnitude of g varies somewhat over
the surface of the earth. We usually use the value
9.8 N/kg.

The result shows that the gravitational force that
the earth exerts on an object whose mass is 1 kg is 9.8
N. Another way of saying that is that an object whose
mass is 1 kg has a weight of 9.8 N at the surface of
the earth.

EXAMPLE 14

At what distance from the surface of the earth does
an object weigh half as much as it does on earth?

Ans.:
The gravitational force on an object whose mass
is M is F = G MMe

r2 . We see that this force (the
weight) is proportional to 1

r2 . At the surface
of the earth r = Re. We will call that distance R1, and
the force there F1.

At some distance that we will call R2, the force
is F2, so that F2

F1
= 1

2 . The proportionality shows that
F1
F2

= R2
2

R2
1
, which we can solve for R2 to give

√
2R1, or

1.41 Re. This is the distance from the center of the
earth. If we want the distance from the earth’s sur-
face, we have to subtract Re, to get 0.41Re as the
answer.

The electric force

Charles Augustin Coulomb did the experiments
that led to the law describing the force between
charges in the years 1785 to 1787. It is called
Coulomb’s law, and the force is often referred to
as the Coulomb force,

Fe = k
Q1Q2

r2 (2.2)

Here Fe is the electric force between two
point charges, Q1 and Q2, a distance r apart.

The SI unit for electric charge is the coulomb. k
is a proportionality constant, which in the SI sys-
tem is 9.00 × 109 Nm2/C2. When both charges
are positive or both negative, they repel; when
one is positive and one is negative, they attract.

+ +

_+

_ _

EXAMPLE 15

Here is an example that illustrates how enormously
strong the electric force is. There are about 6.0 × 1023

atoms in 1 g of hydrogen. Imagine that all of the elec-
trons in 1 g of hydrogen are put on the earth’s north
pole, and all the protons on the south pole 12.8 ×
106 m away. Calculate the force between them.

Ans.:
The charge on a single electron or proton has a magni-
tude of 1.6 × 10−19 C. In the 1 g of hydrogen the
electric charge of the protons is therefore (6 × 1023)
(1.6 × 10−19) or 9.6 × 104 C. The negative charge on
the electrons from the same gram of hydrogen has
the same magnitude. The force between them is there-
fore Fe = (9.0×109)(9.6×104)2

(12.8×106)2
= 5.1 × 105 N, which is

equal to the weight of a mass of 5.2 × 104 kg or 52
metric tons.

(Since the weight of a small apple is about 1 N,
the force is equal to the weight of about half a million
apples.)

The other forces

The gravitational and the electric forces are long-
range forces, and each decreases as 1

r2 , i.e.,

F ∝ 1
r2 . If the separation of two masses or charges

is increased by a factor of two, the force between
them decreases by a factor of four. The gravi-
tational force gets smaller with distance, but it
still acts over very large distances, such as those
between the sun and the earth and the other
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planets. The electric force has the same distance
dependence.

The nuclear force can not be described by
a similarly simple formula. But we know that
it acts only between neighboring nucleons in a
nucleus, or in collisions when they get just as
close to each other.

For the weak force there is also no simple
formula. Its contribution is to allow some nuclear
processes to take place that could not otherwise
happen. It is not responsible for any structures, as
is the gravitational force for the planetary system,
the electric force for atoms, and the nuclear force
for nuclei.

2.3 Summary

Mathematics is the language of physics. Here are
some reminders and reviews of some parts that
we are going to use.

A symbol is shorthand for a quantity (like
x) or an operation (like +). Symbols allow us
to express relationships between quantities by
equations.

Numbers can be positive, negative, or zero.
Very large and very small numbers are best
expressed with powers of ten. 5 × 106 is the same
as 5 followed by six zeros, or 5 million. The expo-
nent (in this case 6) gives the number of spaces
by which the decimal point is shifted—to the
right for positive exponents, and to the left for
negative ones.

The number of significant figures indicates
how precisely a number is known. When we give
no other information about it we will assume that
the numbers in the examples and problems are
known to three significant figures.

Physical quantities are expressed in terms of
units. We will most often use the units of the
SI system, which include meters, (m), kilograms
(kg), and seconds (s).

Relations between quantities can be described
by using tables, graphs, or equations. All of
these are representations of what happens, as are
words and pictures.

A straight line on a graph of y against x is
described by the equation y = mx + b. y is usu-
ally plotted along the vertical axis and x along

the horizontal axis. m is the slope, equal to Δy
Δx ,

and b is the y-intercept, i.e., the value of y when
x is zero.

In a triangle with a right angle and an angle
θ, with O the side opposite θ, A the side adja-
cent to θ, and H the hypotenuse (whose length is√

O2 + A2), sin θ = O
H , cos θ = A

H , and tan θ =O
A .

Newton’s law of gravitation, Fg = G M1M2
r2 ,

describes the gravitational force between two
particles with masses M1 and M2, a distance r
apart. Coulomb’s law, Fe = k Q1Q2

r2 , describes
the electric force between two particles with
charges Q1 and Q2 a distance r apart. The two
expressions are similar in that both forces are
inversely proportional to the square of the dis-
tance between the two interacting particles. Each
includes the product of the characteristic quanti-
ties (mass or charge) of the particles. Each expres-
sion describes a very different physical property.
Each has a very different strength, reflected in the
respective proportionality constant (G or k).

2.4 Review activities and
problems

Guided review

1. You walk to the right 50 yards, then to the
left 17 yards.

(a) Represent the motions mathematically,
letting “to the right” be positive. What does the
result and its sign tell you?

(b) Now answer the question again, but this
time letting “to the left” be positive. What does
the result and its sign tell you?

2. The temperature drops from 15◦F to 0◦F.
(a) Write a mathematical description of what

happens.
(b) Convert the temperatures to the Celsius

scale and repeat.

3. A sign whose weight is 100 lbs is held up by a
chain.

(a) With what force does the chain need to
be pulled up to keep the sign in place?

(b) Write a mathematical description.
(c) What does the sign of each number

represent?

4. Two properties of several elements are shown
in the table. One is the atomic number and the



2.4 Review activities and problems / 29

other is the most common ionization state. The
number in the superscript shows how many elec-
trons have been added to the neutral atom or
removed from it. A “+” sign indicates that the
resulting ion is positive and a “−” sign that it is
negative.

(a) How much positive and how much neg-
ative charge is in each neutral atom? (Give the
answer in multiples of e, the magnitude of the
charge on an electron.)

(b) Similarly represent the charges in each of
the ionized states.

Element Al Zn N C

Atomic number 13 30 7 6

Common Al3+ Zn2+ N3− C4−
ionization state

5. The mass of a proton or a neutron is
0.000 000 000 000 000 000 000 000 001 67 kg.
The mass of an electron is 0.000 000 000 000 000
000 000 000 000 000 911 kg. Put these numbers
in power-of-ten notation.

(a) If you put a proton on one pan of a bal-
ance, how many electrons would you have to put
on the other to balance it?

(b) What is the total mass of the particles
that make up a neutral helium atom?

6. The circumference of a circle is 2.735 m.
How big is the diameter? (How many significant
figures do you know?)

7. Convert the following into SI units. (1 in =
2.54 cm, 1 mile = 5280 ft, 1 food calorie = 1000
cal = 4187 J, 9.8 N = 2.20 lb)

3.4 cm
5 in
140 lbs
30 miles

hour
14.7 lb

in2

2000 food cal
day

8. The strength of attraction, Fm, between two
magnets can be described as Fm ∝ 1

d2 .
You separate the two magnets from d = 1

cm to d = 5 cm. By what factor does Fm change?
Does it increase or decrease?

9. Here is a table of the amount of water (in
gallons) consumed by a soccer team during a
practice session on a hot afternoon as a function
of time in minutes.

Time 30 60 90 120 150 180

Water 1.25 2.5 3.75 5 6.25 7.5
consumed

(a) Make a graph of the data.
(b) Write a mathematical function that

describes the data.
(c) What is the rate at which the team drinks?
(d) They start with 10 gallons. How long can

they practice before they run out of water?

10. Here is a plot of the number of leaves on a
tree as a function of time, in days after the leaves
have started to fall.

(a) Write an equation that describes the data.
(b) After how many days will all of the leaves

have dropped if the equation continues to be
valid?

0 5 10 15 20
t (days)

leaves
on tree

0

400

600

800

200

11. On a very hot day the sales at a lemon-
ade stand can be represented by the equation
y = (x − 2)2 + 9, where y is the rate of sales in
cups per hour and x is the number of hours of
operation after opening from t = 0 to t = 5, at
which time all of the lemonade has been sold.

(a) Make a table of values of x and y at
hourly intervals.

(b) Plot the points and sketch y(x).
(c) What is the slope at t = 2 and 4?

12. A flagpole is mounted on the side of a house.
It is 1 m long and makes an angle of 50◦ with the
vertical.

4m

0

50o
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(a) If the sun shines straight down, how long
is the flagpole’s shadow?

(b) How far from the ground is the end of
the flagpole?

13. What is the gravitational attraction between
two 60 kg people standing 2 m apart?

14. What is the weight of a 1 kg mass on top of
Mount Everest? (H = 8850 m)?

(a) Use proportional reasoning and the fact
that the weight is 9.8 N at sea level.

(b) Check your answer by using Newton’s
law of gravitation.

15. Two spheres are electrically charged, one
with Q1 = −15 nC and the other with Q2 = +15
nC. (1 nC = 10−9C.) This is the charge of about
100 billion electrons and protons. Find the elec-
tric attraction between the two spheres when they
are 2 m apart.

Problems and reasoning
skill building

1. You are out skiing, and in the course of the
afternoon the temperature drops by 8◦C from a
beginning temperature of 4◦C. Describe the tem-
perature change using integers. What does the
result and its sign tell you?

2. Two cylindrical buildings are side by side.
One has a diameter of 100 m and a circumference
of 314 m. The other has a diameter of 135 m. Use
ratios only (not π!) to find the circumference of
the second building.

3. The data in the table show how many pushups
a young boy completes over a period of five days.

Day Pushups

1 4

2 7

3 10

4 13

5 16

(a) Make a graph of the data.
(b) Write a function that describes the data.

4. The figure shows a pool table. Your ball is at
the position marked X. a = 12′′, b = 36′′.

(a) How far is your ball from the left top
corner pocket?

b

a
θ

X

(b) What is the angle θ?

5. At the time of his famous studies on electric-
ity Benjamin Franklin understood that there were
two kinds of electric charge. He called one kind
positive and the other negative. According to his
(incorrect) model electric current in a wire is the
movement of positive charge. The current, I, is
defined as the amount of positive charge passing
a cross section of the wire per second. The figure
shows 15 positive charges in a wire, which move
to the right, past the place marked by a dotted
line in one second.

+ + + + +
+++++
+++++

Today we know that it is actually the nega-
tive charges that move. What is the motion of
charge for the same amount of current to the
right, when negative charges move?

6. Your brother raises gerbils. At the end of each
month you count the baby gerbils in the cage. The
table shows how many there are for the first five
months.

Month Babies

1 0

2 3

3 8

4 15

5 24

(a) Make a graph of the data.
(b) Find a function that describes the data.
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(c) If this trend continues, how many babies
do you expect to find at the end of the sixth
month? The seventh month?

(d) What factors does your mathematical
model not consider?

7. Some people believe that the position of the
planets at one’s birth has a profound influence
on the course of a person’s life.

Calculate the gravitational interaction with
a newborn of the planet Jupiter and of the
attending physician. Which is larger?

8. The angle that the line to the sun makes with
the horizontal can be used to estimate the time
to sunset. (In the afternoon the angle can be esti-
mated from the fact that sin 30◦ = 0.5.) What is
the time to sunset when the sun is 15◦ above the
horizon?

9. A measure of the apparent size of the moon
is the angle that it subtends, i.e., the small angle
in the triangle of which the moon’s diameter is
one side and the two other sides are equal to the
distance to the moon. The angle can be estimated
by holding a pencil or piece of paper at arm’s
length so that part of it forms a triangle similar
to the first, with the same small angle.

Draw a diagram with both triangles. Esti-
mate the angle, and use the distance to the moon
to estimate the diameter of the moon. Compare it
to the value in a table of astronomical quantities.

10. Convert the following energy units to joules.
Give the answer to three significant figures and
use power-of-ten notation with one digit before
the decimal point. Put the answers in the order
of increasing energy.

cal
kwh
horsepower hours
eV
MeV
ft-lbs

11. The weight of a rock on earth is 50 N.
(a) What is its mass?
(b) Use Newton’s law of gravitation to cal-

culate the value of g on the moon.
(c) What are the mass and weight of the rock

on the moon?

12. What can you conclude from the fact that
the apparent sizes of the moon and the sun are
approximately the same?

13. Use Newton’s law of gravitation to deter-
mine the SI units of G. Use Coulomb’s law to
determine the SI units of k.

14. The tides are caused by both the moon and
the sun. Which of the two exerts the greater force
on the earth, and by what factor?

15. What is the ratio of the gravitational force
between the electron and the deuteron in a deu-
terium atom to that in ordinary hydrogen (whose
nucleus is a proton)? Answer the same question
for the electric force and for the total force.

16. Use proportional reasoning to find by what
factor the energy of motion of a runner, 1

2 mv2

(where v is her speed), increases when she
improves her racing time for a 5 km course from
22 min to 19 min.

17. A medieval alchemist had high hopes of
turning lead into gold. The densities of the two
metals are ρgold = 19.3 × 103 kg/m3 and ρlead =
11.3 × 103 kg/m3.

If he had succeeded, what would be the
ratio of the space occupied by 1 kg gold to that
occupied by 1 kg of lead? What would be the
difference in the amounts of space?

18. An accused thief, named Stiles, implores
Sherlock Holmes to help him, saying that he is
wrongfully accused of stealing one million dol-
lars in gold. The evidence against him is that
he was seen placing the gold in a suitcase and
then escaping, running down the street with the
missing gold. Holmes asks Watson “How much
does an ounce of gold go for these days?” and is
told that it is 200 British pounds, with a value of
300 U.S. dollars. Why does Holmes agree to take
the case?

Synthesis problems and projects

1. At “half moon” we see the moon illuminated
by the sun from the side.

(a) Draw a diagram that shows the positions
of the earth, the moon, and the sun at that time.
What is the angle beteen the line EM from the
earth to the moon and the line SM from the sun
to the moon?

(b) Aristarchus of Samos (310 b.c.–230 b.c.)
measured the angle θ between the line EM and the
line ES from the earth to the sun. From this mea-
surement he calculated the ratio of the length of
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ES to the length of EM. How is this ratio related
to the angle θ?

(c) From your knowledge of the modern val-
ues of these lengths (see the table at the end of the
book) what are the values of the ratio and of the
angle?

(d) Look up the value of the angle measured
by Aristarchus and the ratio that he calculated.

(e) Why does a small error in the estimate of
the angle lead to a large error in the ratio of the
two distances?

(f) Aristarchus also noted that the angles
subtended by the moon and the sun at the earth
(i.e. their apparent sizes) are approximately the
same. What does this observation lead to for the
ratio of the radii of the two bodies? How does
his value compare to the modern ratio?

2. Aristarchus used observations during an
eclipse of the moon to determine the ratio of the
diameters of the earth and the moon.

(a) Draw a diagram of the positions of the
sun, the earth, and the moon during an eclipse of
the moon. (The moon is in the earth’s shadow so
that it is not illuminated by the sun.)

(b) Aristarchus measured the time interval
from the time when the moon first comes to the
earth’s shadow to the time when it is completely
in the earth’s shadow. He also measured the
time of “totality,” i.e., the time during which the
moon is completely in the earth’s shadow. This
second time interval turned out to be approxi-
mately twice the first. Indicate the approximate
size relation of the moon and the earth on your
diagram.

The geometrical calculation of the ratio of
the diameters from the observation is somewhat
complicated. Several versions may be found on
webpages devoted to Aristarchus. There you will
also find discussions describing that he seems

to have been the first to believe that the earth
revolves around the sun rather than the other way
around. Copernicus, more than 1700 years later,
is usually given the main credit, but he refers to
the work of Aristarchus.

3. Eratosthenes of Cyrene (273 b.c.–192 b.c.)
determined the circumference of the earth as fol-
lows. At Aswan, on the Tropic of Cancer, at the
summer solstice, at noon, there is no shadow in
a vertical well, i.e., the sun is directly overhead.
At that time, at a distance of 4900 stadia further
north, in Alexandria, (with one stadium proba-
bly about 160 m) the sun was at an angle of 7◦
away from the vertical.

(a) Draw a diagram to show the earth and
the sun at that time in the two places.

(b) What does his measurement lead to for
the radius of the earth? What is the modern
value?

4. The half lives of 238U and 235U are 4.5 ×
109 y and 0.71 × 109 y, respectively. Consider
the hypothesis that the two isotopes of uranium
were present in equal amounts at a time near the
beginning of the universe. Today 235U is 0.72%
of natural uranium. The rest is 238U. Determine
the time implied by this hypothesis as follows.

Make a graph of the amount of 235U as a
function of time on which the horizontal axis
shows time in units of 109 y. On the vertical
axis let equal factors be represented equally, i.e.,
one unit from 2 to 4, the next from 4 to 8, then
from 8 to 16, and so on. (This is called a semilog
plot.) On this graph the amount of uranium as a
function of time is a straight line.

5. An electrically charged ball with a mass of
20 g floats 10 cm above a second one that car-
ries the same charge, q, so that the net force on
the floating ball is zero. What is the value of q?


