
CHAPTER 4

Forces and Motion: Newton’s
Framework

Newton’s laws of motion
When forces add up to zero: the first law
What force really is: the second law
Units
Inertial mass, gravitational mass, and the principle

of equivalence

Adding forces: vectors
One dimension
Two or more dimensions
Force diagrams
Vector components
More on friction
Object or system?

Momentum and its conservation. Action, reaction,
and Newton’s third law

One more motion that is everywhere: rotation
Uniform circular motion
Angular momentum and torque
The angular momentum of particles

What does it take to get something to move? You have to push a book to make
it start to slide along the table. You have to throw a ball to make it leave your
hand to fly through the air. The push on the book and that of your hand on the
ball as you throw it are the forces that determine the motion.The book’s motion
depends not only on how hard you push, but also on the table and how smooth
it is.The ball’s motion also depends on forces other than that of your hand. Once
the ball leaves your hand, the hand no longer exerts a force on it.The other forces
continue to act: the earth pulls it down with the force of gravity. And on its way
the air pushes against it and affects the path that it follows.
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It’s easy to think of more complicated examples. When you are on a bicycle,
the downward push of your feet is linked to forces that make the bicycle move
forward. And just think of all the forces that act in a moving car.

It took a long time for the relation between force and motion to be clarified.
It was Isaac Newton, in the seventeenth century, who developed the framework
that we still use today.

4.1 Newton’s laws of motion

When the forces add up to zero:
the first law

One of Newton’s breakthrough contributions
was to see that it takes no force at all just to keep
an object moving in a straight line with constant
speed. A nonzero net force is there only when the
motion changes in speed or direction, in other
words, when there is an acceleration.

Let’s look at what happens when we slide a
book along a table. At first it just sits there. We
push it and it speeds up. We let go and it slides
along by itself for a short distance. It slows down
and comes to rest. On a smoother table it goes
farther. On ice the same push makes it go quite
far. In each case there is some friction, but the
less friction there is, the farther the book moves.
We can now imagine, as Newton did, that if there
were no friction at all, the book would continue
to move without losing speed. Today we can get
quite close to that situation by letting an object
move on a cushion of air, on an air track or air
table. (You may also be familiar with a game
called air hockey, in which a puck moves on a
cushion of air, almost without friction.)

To make an object slide on a smoother and
smoother surface is something we can do. It’s an
experiment. To make it move without any fric-
tion is something we cannot do. It’s an ideal situ-
ation that we can only approach. Newton imag-
ined what would happen in this ideal case, and
concluded that if there were no friction, and no
other horizontal force, the book would continue
to move in a straight line with constant speed.

Are there any forces on the book when it
just sits still on the table? Is the earth still pulling
down on it? If the table were not there, the earth
would pull the book down and it would fall to the
floor. The table keeps it from falling, and while
the earth pulls down, the table pushes the book
up. The two forces, the force down by the earth

and the force up by the table, are of equal size
but in opposite directions. Their effects cancel
each other out and the net force is equal to zero.
Since there is no net force there is no change in
the motion of the book.
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Each force is an interaction. It takes two!
Whether it’s the force of the earth on the book
or the force of the hand on the ball, there are
always two objects involved. The earth interacts
with the book. The hand interacts with the ball.

When we write a symbol for force, we want
it to tell us which two objects are interacting. We
can write Fearth on book. To make that less clumsy
we shorten it to Feb. The second subscript stands
for the object that we want to talk about, and the
first for the other object that is exerting a force
on it and so interacts with it.

EXAMPLE 1

A rope holds a tire as a swing on the playground.
What are the forces on the tire?

F
et

rtF

Ans.:
The tire is pulled down by the earth with a force
Fearth on tire or Fet.



4.1 Newton’s laws of motion / 59

The tire is pulled up by the rope with a force
Frope on tire or Frt.

In the ideal case, when we imagine the
book to slide without friction or other horizon-
tal forces, the two vertical forces are still there
and add up to zero. After your hand is no longer
in contact with the book and it no longer exerts
a force, there are no horizontal forces, since we
assume that there is no friction. Since the two
vertical forces add up to zero, and since there are
no other forces, the sum of all the forces acting on
the book, the net force, or the unbalanced force,
is zero.
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This is the situation described by Newton’s
first law of motion. To have no force on an object
is an ideal situation impossible to achieve. But
we can talk about what happens when the net
force (the sum of the forces on the object) is zero:
the object remains at rest, or if it is moving, it
continues to move with constant velocity, i.e.,
in a straight line with constant speed. In either
case there is no acceleration. If the sum of all the
forces on an object is zero, its acceleration is zero.
This is Newton’s first law of motion.

What force really is:
the second law

We have talked about forces from the begin-
ning of this book. We already know a good
deal about different kinds of forces. We know
that there are four fundamental forces, namely
gravitational, electric, and two kinds of nuclear.
We know something about the electric forces
between atoms, which lead to the forces exerted
by springs and ropes, to friction and air resis-
tance, and to the forces exerted by our hands as
we push and pull.

But we haven’t really said exactly what we
mean by force. To say that it is a push or a
pull was enough to get us started. Now we will

use our preliminary and intuitive knowledge
to develop a precise and quantitative definition.
In the process we will also define what is meant by
mass, and get to Newton’s second law of motion.

What happens when you step on a bath-
room scale to weigh yourself? At least in an old-
fashioned one there is a spring in it, which is
compressed when you step on the scale.
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A pointer goes around a dial to tell you how
much the spring is compressed. Two forces act
on you as you stand on the scale: one is the force
of the earth, pulling down on you (Fearth on person
or Fep). This is the force that we call your weight.
The other is the upward force of the scale with
its spring (Fscale on person, or Fsp).

While you stand on the scale you have no
acceleration. (Your velocity is constant and equal
to zero.) That tells you that the net force on you is
zero. The two forces on you must add up to zero.

The spring scale gives us a way to measure
forces. We can also do that with a spring that is
stretched. One end is attached to a fixed point,
such as a hook on the ceiling or on a stand.
From the other end we hang a pan on which we
can place various objects to stretch the spring. A
pointer is attached so that we can measure how
far the spring has stretched.

Start with a set of identical metal blocks. Put
one of them in the pan and mark a “1” on the
scale next to the position of the pointer. With a
second block the pointer moves further, and we
mark a “2” where it stops, and so on. We then
know how much any force stretches the spring.
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rope

motion
detector

We say that the scale is now calibrated in units
each of which is equal to the weight of one block.

This means that we now know what the
pointer positions mean. When we take the blocks
off and put on another object, such as a stone,
the pointer moves to a new position. If it points
to “4,” we know that the weight of the stone is
the same as the weight of four blocks. All we
need to assume is that for a given weight on the
scale, the pointer always returns to the same
position. (This will be so as long as the spring
is not stretched too far.)

Now let’s do an experiment in which the
object that is acted on by forces does not remain
at rest. We can use a cart pulled with a rope, as
on the diagram. If we attach our calibrated spring
to the rope and pull on the spring, it will stretch
and pull on the rope. The pointer position tells us
the magnitude of the force with which the spring
pulls on the rope and the magnitude of the force
with which the rope pulls on the cart.

A sonic motion detector can measure the
position of the cart at equal time intervals that
are about 50 milliseconds apart. We can then use
successive points to find the velocity, which can
be plotted against time. Here is such a plot for a
constant pulling force.
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The graph is close to a straight line. Its slope
is the acceleration, here equal to 1.11 in the units
of the graph. If we repeat the measurements for
different forces we find straight lines with differ-
ent slopes, showing that the accelerations are dif-
ferent. We find that the relationship between the
force and the acceleration is also represented by

a straight line, showing us that the pulling force
is proportional to the acceleration of the cart.

We can repeat the experiment with different
numbers of blocks in the cart, but keeping the
pulling force constant. As the number of blocks
increases, the acceleration decreases.

To see what happens when we double the
amount of material that is being pulled, we first
determine the number of blocks that have the
same weight as the cart. We can do this by using
our spring scale. We find that doubling the
amount of material being pulled by the same
force leads to half the acceleration, tripling it to
a third, and so on.

What property of the blocks determines how
large the acceleration is? We call it their mass.
More mass means less acceleration. We see that
the acceleration is proportional to one over the
mass (the reciprocal of the mass) that moves.

Now we’re ready for a precise definition of
force. We will take our preliminary and intu-
itive knowledge and the experimental results
as guides. Only now we take the earlier state-
ments to be exact: We saw that as the force was
increased, the acceleration also increased. The
graph showed that these two quantities are pro-
portional. We also saw that as the mass was
increased, the acceleration decreased. This time
the graph showed that the acceleration is pro-
portional to 1

M , i.e., it is inversely proportional
to the mass. We can combine these statements to
say that the acceleration is proportional to F

M ,
i.e., that the net force is proportional to Ma.

We still need to choose the units for measur-
ing force and mass. For mass we use a standard
mass, that of a particular metal cylinder kept in a
laboratory in Paris, as the mass of one unit in the
SI system. We call this mass one kilogram (1 kg).

In the SI system the quantity Ma is then mea-
sured in kg m

s2 . Since the units on both sides of an
equation have to be the same, we let that also be
the SI unit for force. We give it its own name, the
newton, N. We can now define the net force to
be equal to Ma. The sum of all the forces acting
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on an object or system is equal to its mass times
its acceleration. This is Newton’s second law of
motion.

Guided by the experiments we have refined
our previously rough idea of the meaning of the
term force, and defined both mass and force. A
net force brings about an acceleration. The larger
the net force, the larger the acceleration. The two
are proportional: (a ∝ Fnet). A net force of 100 N
on an object produces twice the acceleration of
a net force of 50 N.

The amount of the acceleration also depends
on the mass of the object on which the force acts.
More mass means less acceleration (a ∝ 1

M ). The
same force of 100 N produces an acceleration on
a 5 kg object, which is twice as large as that which
it produces on a 10 kg object.

EXAMPLE 2

F
net

A block of ice has a mass of 5 kg. The net force on it
is 100 N to the right. What is its acceleration?

Ans.:
The relation between the three quantities is F = Ma,
so that a = F

M = 100 N
5 kg = 20 N/kg = 20 m/s2.

Since both the force and the mass are in SI
units (newtons, N, for force, and kilograms, kg, for
mass), the acceleration comes out automatically in SI
units, m/s2.

Units

It’s really important to keep track of units. It
helps to use a system of consistent units. There
are different metric systems and various English
systems. In this book we will stay, for the most
part, with the SI system, which uses kg, m, s, and
N. Most countries have adopted these units and
multiples of them.

We have used the kilogram as a unit of
mass. Even in the United States it (and the gram,
equal to 10−3 kg) is used on food labels. But
it is unlikely that you have seen the newton
mentioned outside of physics class. In common,
nonphysics language it is pretty much unknown.

This seems surprising, since we talk about
forces frequently. The most common force is the
weight, the force with which an object is at-
tracted to the earth. We can measure our weight
by stepping on a bathroom scale, but you won’t
find any that are graduated in newtons, even
in countries that use the SI system exclusively.
Instead the weight will be marked and referred
to in kilograms. How is that possible, when
kilograms measure mass?

It’s a sort of shorthand. We know that if an
object has a mass of 1 kg, its weight, the force
with which the earth attracts it, is 9.8 N. (This
value is approximately the same at all points on
the surface of the earth.) We can say that the
weight is Mg, where g = 9.8 N/kg. This relation
for the weight as equal to Mg has the same form
as F = Ma. g is the acceleration of an object when
the only force on it is its weight. The units of g
are the usual units of acceleration, m/s2, which
are the same as N/kg.

If people say (incorrectly) “the weight of this
book is 1 kg,” what they mean is “the weight is
that of a book whose mass is 1 kg.” If you step
on a metric scale and it reads 70 kg, it means that
your weight is that of any object whose mass is
70 kg.

You might say that it tells you that your mass
is 70 kg, but that is not necessarily so. If you take
your bathroom scale (the kind that has a spring
inside) to the top of a mountain, it will read less
because the force with which the earth attracts
you is then smaller. The weight is still Mg, but
the value of g is now smaller because you are
farther away from the center of the earth.

But your mass will not change! It is the
quantity that tells you what your acceleration is
when a force is applied to you, and that doesn’t
change, whether you are on earth, on the moon,
or anywhere else. In other words, a spring scale
graduated in kg will no longer read correctly if g
is no longer 9.8 m/s2, or 9.8 N/kg.

In the commonly used English system the
units are defined differently. Here the unit of
force is the pound, equal to 4.445 N. In this sys-
tem it is the unit of mass that is almost never used.

The weight (on earth) of an object whose
mass is 1 kg is 9.8 N, or 2.205 lb. We can say,
more briefly, that a kg weighs 9.8 N or 2.205 lb.
It is important to remember that the kg is a unit
of mass, while the N and the lb are units of force.
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EXAMPLE 3

Bob’s mass is 70 kg. He is on the surface of the earth,
where g = 9.8 m/s2.

(a) What is his weight in newtons?

(b) What does a metric scale register when he steps
on it?

(c) What is his weight in pounds?

Ans.:
(a) His weight is Mg = (70 kg)(9.8 N/kg) = 686 N.

(b) The scale is graduated in kg, and registers 70 kg.
His weight is that of an object whose mass is
70 kg. This weight is Mg or 686 N.

(c) Bob’s weight in pounds is (70)(2.205) = 154 lbs.

Inertial mass, gravitational mass,
and the principle of equivalence

Newton’s law of gravitation says that there is
a force of attraction between any two objects,
i.e., there is a force on each, resulting from the
gravitational attraction to the other. A curious
feature now becomes apparent. We defined mass
from F = Ma as the quantity that tells us what
the acceleration is when a given force is applied.
Quite separately, Newton’s law of gravitation
says that mass is the quantity that tells us what
the gravitational force on an object is. Two quite
distinct physical phenomena are involved. Are
we justified in using the same quantity (mass) and
the same symbol (M) in both cases? It may be bet-
ter to give them different names, inertial mass for
the one based on F = Ma and gravitational mass
for the one based on gravitation. But no obser-
vation or experiment has ever been able to detect
a difference.

In Newtonian, classical physics that’s as far
as we can go. The fact that the same quantity
governs two seemingly unrelated phenomena
remains a fortuitous quirk of nature.

Einstein, in 1915, saw more. Consider a
closed box, or elevator, he said. Let go of an
object in your hand, and it falls to the floor.
That’s not very mysterious. Presumably it is
falling down because of the gravitational attrac-
tion of the earth. But you can’t look out. Is there
another explanation? Perhaps you are far from
the earth and the elevator is accelerating. You feel

the floor pushing up on you, and when you let
go of the object in your hand, it accelerates with
respect to the floor. There is no way, from inside
the elevator, for you to tell the difference between
the two explanations. The first case depends on
gravitation and involves the gravitational mass.
The second depends on acceleration and involves
the inertial mass. But you can’t tell the differ-
ence. They are the same.

This is the principle of equivalence, and it
is the cornerstone and starting point of the gen-
eral theory of relativity, the modern theory of
gravitation.

To have unified the two aspects of mass
would already be a great achievement. Beyond
that, however, the general theory of relativity
leads to results different from those described
by Newton’s law of gravitation. Einstein pre-
dicted three observational differences when he
first described the theory in 1915. They are three
astronomical effects. The first is a difference in
the orbit of Mercury (the planet closest to the
sun) from the Newtonian calculation. The sec-
ond is the bending of light when it gets close
to the sun. The third is a change in the wave-
length of light emitted from a source where the
gravitational force is very large.

For each case the observations showed that
Einstein’s predictions were correct. In other
words, the general theory of relativity was seen
to describe the observed gravitational effects
better than Newton’s law of gravitation. For
decades they remained the only observable re-
sults of the theory that were different, and came
to be regarded as curiosities. With advances in
observational astronomy in the last part of the
twentieth century, however, a whole new era
began for the general theory. After lying dormant
for a long time, it is now a vital component of
modern physical science.

One widespread application is in Global
Positioning Systems (GPS). The great precision
of today’s global positioning devices relies on
calculations using the general theory of relativity.

4.2 Adding forces: vectors

One dimension

Let’s talk again about the book at rest on the
table. Suppose its weight is 10 N. That’s the
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downward gravitational force attracting it to
the earth. There is also the force with which
the table pushes up. There is no acceleration,
and therefore there is no net force. That means
that the two forces (one up and one down) can-
cel. They are each 10 N, and they add up to zero.
We see that we are dealing with quantities that
behave very differently from numbers.

10 N

10 N 10 N

10 N

The direction matters. If two 10 N forces
are in the same direction, their sum is 20 N.
But if they are in opposite directions, they add
up to zero. A quantity that has not only a size
or magnitude, but also a direction, is a vector
quantity. Examples are displacement, velocity,
acceleration, and force. Quantities that have no
direction, such as temperature, time, money, and
energy, are scalar quantities. They add just like
numbers.

When all the forces are vertical, we can say
that we will let all upward forces be positive and
all downward forces negative. (It could be the
other way around. It’s a choice we make. Either
way, the physical result is the same.) The weight
(the downward force that the earth exerts) is then
−10 N, the upward force of the table is 10 N,
and their sum is zero. The net force is zero even
though there are two forces.

EXAMPLE 4

v

(i) (ii)
 

(iii)

The figure shows (i) a freely falling rock, (ii) a hockey
puck on ice, moving with constant velocity, and (iii)
a box being pulled on a frictionless table.

For each of the objects in the figure,
(a) represent the forces on the object by vectors.

(b) Write the mathematical and the verbal statement
of Newton’s second law with these forces.

Ans.:

(ii)(i)
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(iii)
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(i) Fer = Ma. The force of the earth on the rock
(its weight) is equal to the rock’s mass times its
acceleration.

(ii) Fep − Ftp = 0. The magnitude of the force of the
earth on the puck (the weight of the puck) minus
the magnitude of the force of the table on the
puck is zero. There is no horizontal acceleration,
and therefore no net horizontal force.

(iii) Feb − Ftb = 0. Frb = Ma.
Vertical forces: the magnitude of the weight

of the box minus the magnitude of the force of
the table on the box is zero.

Horizontal forces: There is only the force of
the rope on the box. It is the net force and it is
equal to the box’s mass times its acceleration.

Two or more dimensions

Using only positive and negative numbers works
as long as the forces are along the same line, up
and down, or right and left. But what do we
do if the forces are at some other angle to each
other?

We start by representing each vector quan-
tity by a line, whose length represents the mag-
nitude, and whose orientation, with its arrow,
shows the direction.

It’s easiest to see the general method if we use
displacement vectors. You just make a map. Sup-
pose we look at the displacements from A to B,
then from B to C, from C to D, and finally from
D to E. The first vector goes from point A to point
B, with its arrow pointing toward B. The other
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A

B

C

D
E

sum

vectors follow, “tail” to “head,” until we get to
point E. The sum of the four displacements is the
single displacement from the beginning point (A)
to the endpoint (E).

That’s the way it works for all kinds of vec-
tors. The most straightforward way to add them
is to draw them so that they touch, head to tail.
Their sum is the single vector from the beginning
(tail) of the first to the end (head) of the last.
(If you make a mistake and let two heads touch,
you’ll get the wrong answer!)

Go to the PhET website (http://phet.colorado
.edu) and open the simulation Vector Addition.

Check “Show Sum” and “None” under Com-
ponent Display. The arrows representing vectors
can be dragged from the basket. Their length can
be changed and they can be tilted by grabbing
their heads. Explore different angles and different
numbers of vectors. Look at the sum when you
(correctly) put two vectors head to tail as well as
when you put them tail to tail and head to head.Tilt
a vector and observe what happens to the vector
that represents the sum.

Come back to this simulation later after the
discussion of vector components.

A vector is usually described by a boldface
symbol (A) or a symbol with an arrow over it
( �A). The plain symbol then refers to the magni-
tude (or length) only. If the vector nature of a
quantity is obvious we may leave out the vec-
tor notation. But we have to be careful. For
example, A + B represents the sum of the mag-
nitudes or lengths of the two vectors A and B.
But A + B is a vector whose magnitude is less
than A + B unless the two vectors point in the
same direction. For example, if A is 10 N to the
right, and B is 10 N to the left, the vector sum
A + B is equal to zero, but (A + B) is the sum of

the magnitudes of the two vectors, and is equal
to 20 N.

If the three vectors F1, F2, F3 represent all of
the forces that act on an object, then their vector
sum, �F = F1 + F2 + F3, is the net force, and this
is the quantity that is equal to Ma. (The symbol
Σ is a capital Greek sigma. It is often used to
represent the word sum.) �F is the vector sum of
all the forces acting on an object.

EXAMPLE 5

F
Tb F

Db

Tom and Dick pull on strings attached to a box with
forces of 30 N each. (Call them FTb and FDb.) They
pull at right angles to each other, as shown in the
diagram, which shows the view from above. What is
the sum of the two forces?

Ans.:
Draw vectors representing the two forces head to tail:

F
Tb

F
Db

sum

Their sum is the vector from the tail of the first to
the head of the second. The two vectors and their sum
form a right-angle triangle. The sum of the squares of
the sides next to the right angle is equal to the square
of the third side (the hypotenuse), i.e., the sum is√

302 + 302 or 42.4 N. The sum of the two forces is
therefore a force whose magnitude is 42.2 N, acting
at an angle of 45◦ to the direction in which Tom pulls,
as shown in the diagram. Note that the answer is the
same if you start with Dick’s force.
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EXAMPLE 6

F
Tb

F
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Tom, Dick, and Harry pull on strings attached
to a box. Harry pulls to the right with FHb = 40 N.
Tom and Dick pull with forces of 30 N each at angles
of 45◦ to the direction in which Harry pulls, as
shown in the diagram. What is the sum of the three
forces?

Ans.:
Start by adding Tom and Dick’s forces, which we
will call FTb and FDb. Since they are at 45◦ to Harry’s
force, they are at 90◦ to each other. To add them we
redraw the vectors head to tail.

F
Tb F

Db

F
Tb +  F

Db

Their sum is the third side of the right-angled
triangle formed by the two forces. It is to the right,
with a magnitude of

√
302 + 302 = 42.4 N.

Harry’s force is in the same direction, to the
right. We are left with two forces, 42.4 N and 40 N,
both to the right. Since they are in the same direction,
we can just add their magnitudes, to get 82.4 N to the
right.

Since two vectors of equal magnitude and
opposite directions add up to zero, we see that
to change the direction of a vector is to make it
the negative of the original vector. If we want
to subtract B from A, we can rewrite A − B as
A + (−B), and add the vector A to the vector −B,
which is in the opposite direction to the vector B.

A

–A

EXAMPLE 7

A

B

The vector A is 50 N north.
The vector B is 30 N to the east.
Draw the appropriate vector diagrams and

(a) find A + B

(b) find A − B.

Ans.:
(a) The magnitude of the sum is

√
502 + 302 =√

2500 + 900 = √
3400 = 58.3 N in the direc-

tion shown in the diagram. (We can use the
Pythagorean theorem, A2 + B2 = C2, because
the vectors are at right angles.)

A

B

A+B A

–B

A+(–B)

(b) The vector −B is 30 N west. Add A and −B.
The magnitude is the same as for part (a). The

direction is now different, as shown in the diagram.

We have used the symbol F for force in New-
ton’s second law, as if there were only one force
acting on our object. In general, we should use
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the net force, i.e., the vector sum �F of all the
forces acting on the object. Newton’s second law
can then be written as �F= Ma: When one or
more forces are applied to an object whose mass
is M, and the vector sum of all the forces acting
on the object is �F, the acceleration of the object
is given by the relation a = �F

M .

Force diagrams

When we want to apply Newton’s second law
to a particular situation, we first have to decide
which object we want to apply it to. Then we
have to look for all the forces acting on the object.
That means that we are not looking for the accel-
eration, or for the velocity, or for forces acting on
other objects! We make a diagram on which we
represent the object by a dot, and draw vectors
representing all of the forces on the object. The
important thing is to make sure that we put on
the diagram only the forces acting on that partic-
ular object, and that we put on all of them. The
result is a force diagram.

If you are not sure whether a certain force
should be included, ask yourself: what is the
object that I am considering? What are the other
objects that are interacting with it? Are they
touching? The other object that exerts a force
can be some distance away if the force is gravi-
tational or electric, but it has to be touching for
a force like the tension of a rope or the push of a
hand or of a spring.

We can now add up the vectors representing
the forces so as to find their sum, �F, and use
it in the expression for Newton’s second law. If
there are several forces in the x direction, and sev-
eral forces in the y direction perpendicular to it,
it is often helpful and convenient to apply New-
ton’s second law separately in the two directions:
ΣFx = Max and ΣFy = May.

EXAMPLE 8

A book whose mass is 1.2 kg is on a table. It is being
pulled forward by a horizontal force of 7 N. There is
also a force of friction of 2 N.

(a) Draw the force diagram, labeling all the forces.

(b) Find the book’s acceleration.

Ans.:
(a) On the force diagram the dot represents the

book. Four forces act on it: Its weight, Feb = Mg

(the force of the earth on the book), Ftb, the
upward force exerted by the table on the book,
Fpb, (person on book) the horizontal pull on the
book to the right of 7 N, and Ff , the force of
friction.

F
tb

F
pb

F
eb

F
f x

y

(b) Let the up direction be the y direction and the
direction in which the 7-N force acts, the x
direction.

The two forces along the y direction are
Feb and Ftb. There is no acceleration in the
y direction. (The book does not jump up from
the table.) Therefore the sum of the two forces
along the y direction must be zero.

There are two forces along the x direction,
the force of 7 N to the right and the force of fric-
tion (2 N) to the left, so that their sum is 5 N
to the right. This is also the sum �F of all four
forces, and it is therefore equal to Ma. a = �F

M =
5 N

1.2 kg = 4.17 m/s2. to the right. (Since the force
and the mass are both given in SI units, the accel-
eration is automatically also in the same system
of units.)

We have added four forces. Two are along
the y-axis and add up to zero. There is a net
force along the x-axis. It is also the sum of all
the forces acting on the book, and is therefore
equal to Ma.

Vector components

Together the x-axis and the y-axis are a coordi-
nate system. It allows us to describe the positions
of points, lines, or objects. It is an aid to describ-
ing a situation or solving a problem, and we can
choose it any way we want. We choose one
direction of each axis to be positive and the
other to be negative, Many times we choose the
axes to be horizontal and vertical, but that is not
always so.
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If a force is at an angle to the axes, we can
replace it with two forces that are parallel to the
two axes and that add up to it. The one parallel to
the x-axis is called the x component, Fx, and the
one parallel to the y-axis is called the y compo-
nent, Fy. For an angle θ between the direction of
F and the x-axis, Fx = F cos θ and Fy = F sin θ.

F
y

F
x

F

Adding vectors head to tail, as we have done
so far, is convenient graphically. It also allows the
calculation of numerical values of the magnitude
and direction of the sum in simple cases, as, for
example, when the vector diagram is a triangle
with a right angle. In more complicated cases it
may be better to use components.

To do this it is first necessary to choose a
coordinate system, i.e., directions for the x- and
y-axes. We can then find the x and y components
of the vectors that are to be added.

All the x components can now be added.
Since they are all along the same line, no angles
need to be considered. It is important, however,
to make sure which of the components are in the
same direction as the x-axis, and are positive, and
which are in the opposite direction and are neg-
ative. The x components are negative when the
angle of the vector with the x-axis is between 90◦
and 270◦, i.e., when the vector is in the second
or the third quadrant. We can write the sum of
the x components as ΣFx. This quantity is the x
component of the sum of the vectors.

Similarly the y components can be added to
give ΣFy, which is equal to the y component of
the vector sum. A y component is negative when
the angle of the vector with the x-axis is between
180◦ and 360◦, i.e., when the vector is in the
third or the fourth quadrant.

Knowing the x and y components of the
vector sum gives us all of the information
about the sum. We can calculate its magnitude,√

(ΣFx)2 + (ΣFy)2. The angle that the sum makes

with the x-axis is the angle whose tangent is ΣFy
ΣFx

.

More on friction

Let’s look again at the forces on the book on
the table. When the book is at rest, without any
horizontal forces, there are only two: one is the
weight, Mg, for which we have also used the sym-
bol Feb, to indicate that it is the force of the earth
on the book. It is always there, unless the object
is far from the earth. Near the surface of the earth
the value of g is about 9.8 m/s2, or 9.8 N/kg. At
some distance from the earth the weight is still
Mg, but the value of g is then different. The
direction of this force is toward the center of
the earth.

The second force is the force of the table on
the book, Ftb. It is upward and perpendicular
to the surface of the table. This force is often
called the normal force, Fn. (This does not mean
that other forces are abnormal. The word normal
here means the same thing as perpendicular or at
right angles.) For a book sliding along an inclined
plane, or for a car along a road or track at some
angle, there is always a normal force, a force of
the surface on the book or the car, at right angles
to the surface along which it moves.

Now push the book horizontally with a force
Fpb (person on book). At first the book does
not move. There is a force of friction (Ff ) in the
opposite direction to Fpb, and it has the same
magnitude as Fpb.

When we increase our push, Fpb, the force
of friction initially grows with it, and the book
remains at rest. There is, however, a maximum
value beyond which Ff cannot grow, so that there
is then a net force Fpb − Fmax

f , and the book
accelerates.

Once the book starts to move, the force of
friction remains steady, but at its sliding value
Fs

f , which is smaller than Fmax
f .

The ratio
Fmax

f
Fn

is called the coefficient of

static friction. The ratio
Fs

f
Fn

is called the coeffi-
cient of sliding friction. Both of these coefficients
depend on the nature of the two surfaces that are
in contact. The symbol μ (Greek mu) is generally
used for the coefficient of friction.

EXAMPLE 9

Go to the PhET website (http://phet.colorado.edu)
and open the simulation Forces and Motion. Play
with the Introduction and Friction. Look at the force
diagram (here called “Free Body Diagram.”) Then go
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to Force Graphs. Choose the small crate, friction off
(“Ice”), check applied force, and click on all graphs
(a, v, and x). Type in an applied force of 200 N, put
the crate at −7 m, and record.

(a) What is the acceleration shown on the graph?
Compare it to the value you expect from New-
ton’s second law.

(b) What is the shape of the velocity graph? What
is its equation? Calculate the velocity just before
it hits the wall. Compare this value to the value
on the velocity graph.

(c) What is the shape of the position graph? What is
its equation? Calculate the position at the end.
Compare it to the value on the position graph.
(Don’t forget where you started.)

(d) Clear. Check friction “wood.” Check only the
applied force graph. Press the “go” button.

Increase the applied force until the file
cabinet moves. Find the necessary force to the
nearest 10 N.

What is the coefficient of static friction?

(e) Once the object moves the force of friction
decreases and the coefficient of friction decreases
to the coefficient of sliding friction.
What happens to the force of friction when the

object moves?
Find the coefficient of sliding friction.

Ans.:
(a) a = 0.5 m

s2 .

(b) v = at, v = 0.5t.

(c) Since he starts at x = 7 m, x = −7 + v0t + 1
2 at2,

i.e., x = −7 + 0.25t2.

(d) The coefficient of static friction is 490
100×9.8 = 0.5.

(e) The coefficient of sliding friction is 294
100×9.8 =

0.3.

EXAMPLE 10

Find the x and y components of these vectors, using
sines and cosines.

y

x

10 N

30˚

50˚

7 N

Ans.:
For the vector on the left, Fx = 10 cos 30◦ =
(10)(0.866) = 8.66 N.

Fy = 10 sin 30◦ = (10)(0.500) = 5.00 N.
For the vector on the right, Fx = 7 cos 50◦ =

(7)(.643) = 4.50 N.
Fy = 7 sin 50◦ = (7)(.766) = 5.36 N.
This is the magnitude of Fy. It points downward,

in the −y direction, and is therefore negative, equal
to −5.36 N. (Similarly, an x component in the nega-
tive x direction would be negative.)

EXAMPLE 11

Go to the PhET website (http://phet.colorado.edu)
and open the simulation Ramp: Forces and Motion.
Play with the Introduction, Then go to Force
Graphs,

(a) Check “wood.” Choose the crate and use the
position slider to put it on the ramp. Press the
“go” button.

Change the angle of the ramp (use the angle
slider or drag the top of the ramp) until you
find the largest angle at which the crate just rests
without moving down.

At this angle, what are the forces on the
crate?

What is their sum?
One force is the weight. How are the other

forces related to the weight?
What is the magnitude of each of the forces?

(b) Set the applied force to 300 N. Do not change
the angle. Answer all the other questions in
part (a).

(c) Set the applied force to 1000 N. Answer all the
questions in part (b).

Ans.:
(a) The angle is 26.6◦. The vector sum of the forces

is zero. The weight is Mg = 980 N. The nor-
mal force is N = Mg cos θ = 876 N. The force
of friction is μN = 438 N.

(b) With an applied force of 300 N the crate still
does not move. The sum of the forces is zero. The
perpendicular components are N and Mg cos θ.
The magnitude of the applied force is equal to
the force of friction plus the component of the
weight Mg sin θ. Note that the force of friction
is not equal to μ N. μ N is the maximum force
of friction.
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(c) With the applied force of 1000 N the force of
friction is not large enough to keep the crate
from moving. The sum of the forces is now
not zero. The perpendicular components are as
before and add up to zero. In the direction par-
allel to the ramp, using “up the ramp” as the
positive direction, the net force F is equal to the
applied force, Fa, minus the force of friction,
f , minus the component of the weight down
the ramp: F = Fa − f − Mg sin θ. The crate
accelerates up the ramp with a = F

M .

EXAMPLE 12

Repeat Example 8 for the same book, but this time
the book is being pulled forward by a string at an
angle of 15◦ with a force of 7 N.

(a) Draw the force diagram.

(b) What is the coefficient of friction in Example 8?

(c) Assume that the coefficient of friction remains
the same, and find the force of friction.

(d) Find the book’s acceleration.

Ans.:
(a) We choose the same coordinate system, the

x-axis horizontal and the y-axis vertical. The
force pulling the book (Fpb = 7 N) is now at an
angle, and we can decompose it into its two
components. Its x component is 7 cos 15◦, or
(7)(.97) = 6.76 N. The y component is 7 sin 15◦

= (7)(.26) = 1.82 N.
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(b) The normal force, Fn, which is the force of the
table on the book, Ftb, is different from its value
in Example 8. It is Feb − Fpb sin θ, i.e. (1.2)(9.8)
−1.82, which is 11.76 − 1.82 or 9.94 N.

(c) In Example 8 the coefficient of friction is Ff
Fn

=
2

11.76 = 0.17. In this example Ff
Fn

is again 0.17,
but Fn = 9.94 N. Hence Ff = (9.94)(0.17) =
1.69 N.

The vertical forces add up to zero, as
before, because there is no vertical acceleration.
ΣFx = Fpb cos θ − Ff , or 6.76−1.69, which is
5.07 N.

(d) The acceleration is 5.07
1.2 = 4.23 m/s2.

EXAMPLE 13

y

θ

A box is at rest on a surface that slopes at an angle
of 30◦ to the horizontal.

(a) List the forces on the box. Draw a force diagram.

(b) What forces are perpendicular to the surface?
What forces are parallel to the surface?

(c) The weight is neither parallel nor perpendicu-
lar to the surface. Use a coordinate system with
the x-axis parallel to the surface and down it,
and the y-axis perpendicular to the surface and
up. Find the weight’s x component and its y
component.

(d) Write down the relation between the y compo-
nents of all the forces.

(e) Write down the relation between the x compo-
nents of all the forces.

(f) The mass of the box is 2.5 kg. Find the magnitude
of each of the forces.

Ans.:
(a,b) The weight, Feb = Mg, is straight down, and

therefore neither parallel nor perpendicular to
the surface. The normal force, Fn, is perpendic-
ular to the surface, and the force of friction, Ff ,
is parallel to the surface. (You can see that the
two angles marked θ on the left are the same by
imagining the two vectors Feb and Fn rotating
together through 90◦.)

(c) The y component of the weight is Mg cos 30◦.
The x component is Mg sin 30◦.

(d) Mg cos 30◦ − Fn = 0.
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(e) Mg sin 30◦ − Ff = 0

(f) Mg = (2.5)(9.8) = 24.5 N.
Fn = Mg cos 30◦ = 21.2 N.
Ff = Mg sin 30◦ = 12.25 N.

EXAMPLE 14

(a) The box of the previous example slides down
the same surface without friction. What is its
acceleration?

(b) The box slides down the surface with an accel-
eration of 2 m/s2. What are the magnitude and
direction of the force of friction?

Ans.:
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(a) This time Ff is zero. The other two forces are
unchanged. There is again no acceleration along

the y direction. The force along the x direc-
tion is the x component of the weight, 12.25 N.
There is no other force with a component in this
direction, so that a = 12.25

2.5 = 4.9 m
s2 .

(b) The force of friction is in the direction
opposite to the direction of motion, in the
−x-direction. The forces perpendicular to the
surface are unchanged. The forces parallel to
the plane, in the x-direction, are Mg sin 30◦

in the positive direction and Ff in the neg-
ative direction. Mg sin 30◦ − Ff = Ma. Ff = Mg
sin 30◦ − Ma = 12.25 − 5 = 7.25 N.

EXAMPLE 15

You jump from a table straight down to the floor.
Neglect air resistance. Assume that your mass is
65 kg.

(a) Draw a force diagram for the time that you are
in the air.

(b) What objects interact with you? What is the net
force on you?

(c) What is your acceleration?

Ans.:
(a)

F
ep

(b) Since we are neglecting air resistance, the only
force on you is your weight, Fep. It is equal to
Mg or (65 kg)(9.8 m/s2) = 637 N.

(c) Since the only force on you is your weight, your
acceleration is g = 9.8 m/s2.

EXAMPLE 16

You jump from a table, as in the previous example,
but this time you push off so that you jump away
from the table and not straight down. Repeat parts
a, b, and c of the previous example.

Ans.:
This time your path is not along a straight vertical
line. However, as long as we continue to neglect air
resistance, the only force that acts on you is still your
weight. The answers to all three parts of this question
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are therefore the same as before. Your weight is the
same, and your acceleration is g.

Object or system?

We often apply Newton’s second law to a com-
bination or system of more than one object. In
fact, unless we are talking about a single particle
without internal structure, every object consists
of more than one particle. In the previous sec-
tion we said that we first have to decide to which
object we want to apply the law. Now we see that
it is really the system that we have to choose.
Only then can we decide what the forces are
that we need to consider, namely all the forces
that act on the system that we have chosen. To
make clear what the system that we choose is,
we can draw a dotted line around it on our
sketch.

EXAMPLE 17

M
1 M

2

F

Two blocks are connected by a string. Their masses
are 5 kg and 3 kg. The less massive one is being pulled
by a second string, with a force, F, so that its acceler-
ation is 2 m/s2. (Neglect friction and all other forces.
The vertical forces add up to zero and need not be
considered.)

(a) Draw force diagrams for the system consisting
of both blocks, and for each block separately
(for the horizontal forces only).

(b) What is the force (the “tension”) of the second
string?

(c) What is the tension in the string connecting the
two blocks?

Ans.:
(a)

FF
s2F

s1F

Let Fs1 be the force of the string on M1 and
Fs2 the force of the same string on M2. These

two forces have the same magnitude but are in
opposite directions. (This is an approximation.
We are neglecting the mass of the string.) The
force diagrams are for the system consisting of
both blocks, the system with only M1, and the
system with only M2.

(b) Apply Newton’s second law to the system con-
sisting of both blocks. There is only one force on
this system, the force F. The mass of the system
is the sum of the two masses, 5 + 3 = 8 kg. Since
the acceleration is 2 m/s2, F = Ma = (8)(2) =
16 N.

(c) The only force acting on the 5 kg mass is the ten-
sion in the string that connects the two masses.
It is the force exerted by the string on the
5 kg mass, and we have called it Fs1. Fs1 = Ma =
(5)(2) = 10 N.

The string connecting the two blocks pulls to
the right on the 5 kg block with the force Fs1 and
to the left on the 3 kg block with a force Fs2 of
the same magnitude.

We know from part (b) that the force to the
right on the 3 kg block is 16 N. We can use the
forces on this block to find Fs2 (and Fs1) in a sec-
ond way. The net force is 16 − Fs2 to the right.
It is equal to Ma.

16 − Fs2 = Ma = (3)(a) = (3)(2) = 6. Fs2 =
16 − 3a = 16 − 6 = 10 N, as before.

4.3 Momentum and its
conservation. Action,
reaction, and Newton’s
third law

When two objects collide, there are two quanti-
ties that we need to focus on. One is how fast
they are going, the other is their mass. We define
a new quantity, the momentum, equal to the
product of the mass and the velocity. Like veloc-
ity, it is a vector quantity. A small car, moving
slowly, has a much smaller momentum than a
truck barreling along at great speed. A table-
tennis ball coming at you fast is not likely to hurt
you. A car with the same speed is vastly more
dangerous.

Acceleration is the quantity that tells us how
fast the velocity is changing. It is the rate of
change with time of the velocity. Force (mass
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times acceleration) is therefore the quantity that
tells us how fast the momentum (mass times
velocity) is changing. It is the rate of change with
time of the momentum. In symbols we can write
a = d

dt (v), F = Ma = d
dt (Mv). We can rephrase

Newton’s second law to say that the force on an
object is equal to the rate at which the object’s
momentum changes.

If there is no net force on an object then its
momentum does not change, it is conserved. At
first sight this hardly seems like a new or impor-
tant statement. Isn’t that just Newton’s first law,
a = 0 when F = 0? Yes, that’s true if we talk
about a single particle, but look at what happens
if we talk about two particles. Together we can
think of them as a composite object, or a system.
If there is no force on this system from outside it,
its momentum is constant.

EXAMPLE 18

A ball whose mass is 0.2 kg is at rest on the ground.
It is hit head-on by a second ball whose mass is
0.1 kg, and which is initially moving with a velocity of
3 m/s in the x direction. (Neglect all horizontal forces
other than those that the two balls exert on each
other.)

(a) Make a sketch and draw a dotted line around
the system that you will consider. Show all
momentum vectors.

(b) Is there a net force on the system?

(c) After the collision the two balls stick to each
other and move off together. What is their
velocity right after the collision?

(d) In a different collision, starting as before, the
balls do not stick to each other, and the ball
that was initially at rest is observed afterward to
move with a velocity of 1.2 m/s in the x direction.
What is the velocity of the other ball after the
collision?

(e) In still another collision, again with the same
start, the ball that was originally at rest is
observed after the collision to be moving with
a velocity of 0.8 m/s in a direction at 45◦ to
the x direction. Draw a diagram that shows
all momentum vectors. From your diagram find
(graphically and analytically) the momentum of
the other ball after the collision. What is its
velocity?

Ans.:

(a)

v
o

v
f

(b) No, the forces that the balls exert on each other
are internal to the system. (There are vertical
forces, but they add up to zero.)

(c) Before the collision the total momentum of
the system is that of the moving ball, (0.1 kg)
(3 m/s) = 0.3 kg m/s in the x direction.

The momentum of the system consisting of
the two particles is conserved, i.e., the momen-
tum before the collision is equal to the momen-
tum after the collision, still 0.3 kg m/s. (The
diagram shows the initial momentum vector and
the final momentum vector. They are equal in
magnitude and direction.)

The mass of the system is the sum of the
masses of the two particles, 0.2 kg + 0.1 kg =
0.3 kg. The velocity of the system of the two balls
sticking together after the collision is therefore
0.3 kg m/s

0.3 kg = 1m
s in the x direction.

(d) The initial total momentum is the same as in
part (a), 0.3 kg m/s in the x direction. The total
momentum is conserved, and is again the same
after the collision.

The momentum of the 0.2 kg ball is
(0.2 kg)(1.2 m/s) = 0.24 kg m/s in the x direction.



4.3 Momentum and its conservation / 73

It is shown as M2 on the diagram. The
momentum of the 0.1 kg ball is therefore
0.3 kg m/s − 0.24 kg m/s = 0.06 kg m/s. It is
shown as M1 on the left-side diagram. Its
velocity is 0.06 kg m/s

0.1 kg = 0.6m
s , in the x direction.

 M1 M2

 M

 M1 M2

 M

45o

(e) The initial momentum is again the same, and
since momentum is conserved, so is the momen-
tum after the collision. But the directions are
now not along the x direction. The diagram
shows the momentum M2 after the collision
of the 0.2 kg ball at 45◦ to the x-direction.
Together with the momentum M1 of the
0.1 kg ball it must add up to the total momen-
tum, which is again 0.3 kg m/s, both before and
after the collision.

Graphically, from the momentum diagram,
the momentum of the 0.1 kg ball (M1) is
0.22 kg m/s, at an angle of 31◦ to the x
direction.

Analytically: M2 has two components,
M2 cos 45 = (0.16)(.707) = 0.113 kg m/s and
M2 sin 45, which has the same magnitude.

M1 has two components: (M)x = (M)tot −
M2x = 0.3 − 0.113 = 0.187 and My whose
magnitude is 0.113. The magnitude of M1 is√

.1872 + .1132 = 0.219.
The tangent of the angle θ is .113

.187 , so that
θ = 31.1◦.

To find the velocity we divide by the mass to
get 2.2 m/s.

If the momentum of one of the two particles
changes (still with no forces from outside the sys-
tem), the other must change also, in the opposite

direction, so as to keep their combined momen-
tum constant. The rate at which the momentum
of one changes must be just as large as the rate at
which the momentum of the other changes, and
in the opposite direction. But the rate at which
the momentum of a particle changes is the force
on it. We see that the force on one particle is
equal in magnitude to the force on the other, and
is in the opposite direction.

F
12F

21

There is no force from the outside. The only
forces are the ones inside the system that the two
particles exert on each other. These are the force
that particle one exerts on particle two (F12) and
the force that particle two exerts on particle one
(F21). These forces must be equal in magnitude
and opposite in direction. F12 = −F21. This is
Newton’s third law.

But we knew this already! At least intu-
itively. Force is an interaction. The two objects
that interact either attract or repel each other
with forces that have the same magnitudes.

Newton’s third law remains true regardless
of any other forces. It says that all forces occur
in pairs. If I push you, you experience a force. As
I do that I experience a force on me from you,
equal to my push and in the opposite direction.
The same is true if I push against a wall. The
wall pushes back on me with a force equal in
magnitude and opposite in direction.
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You may ask: “If all forces come in pairs
that add up to zero, how can anything ever get
going?” The two forces of a Newton’s third law
pair act on different objects! The net force on
any one object is the sum of the forces that act
on that one object, and this is what gives rise to
its acceleration.

If there are two masses, M1 and M2, and you
want to know how M1 moves, you have to draw
a force diagram for M1. One of the forces on it
will be F21, the force exerted on M1 by M2. There
may be other forces on it. The vector sum of all
the forces on M1 determines what happens to M1.
Similarly, if you want to know what happens to
M2, and draw a force diagram for it, one of the
forces (among others) will be F12.

You may also want to draw a force diagram
for the system composed of both M1 and M2.
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This time the pair of forces F12 and F21 are
forces inside the system. They don’t influence the
motion of the system as a whole, only what hap-
pens inside it. They are internal forces that add
up to zero.

Sometimes Newton’s third law is described
by saying that “for every action there is an equal
and opposite reaction,” but this is not a particu-
larly helpful way to think about it. The words
action and reaction are not defined, and they
don’t make it clear that the two forces act on
different objects. Moreover a reaction is usu-
ally thought to come after the action, and this
is not true here. The two forces that Newton’s
law refers to act simultaneously.

Next, think of a system or combined object
consisting of many particles. Even the tiniest
visible object consists of a huge number of micro-
scopic pieces, its atoms and molecules. They
exert forces on each other, each one on its neigh-
bor, and to a lesser extent on those further away.
Inside the atoms the nuclei and electrons also
exert forces on each other. Each fragment of
material is a seething mass of particles exerting
internal forces on each other.

We can now see that there is a simple way
to deal with these forces. After all, when we hold
a ball in our hands we are not aware of all of the
atoms and molecules that constitute it, nor of the
forces between them. Because they come in pairs,
each of which adds up to zero, we can just ignore
them!

It is really important to be able to talk about
a tennis ball or any other object without each
time having to consider all the molecules (and
their constituents) within it. We have always
done that, and now we see that it is Newton’s
third law that allows us to do it.

Once we agree that the sum of the internal
forces is zero, the net force acting on the system
can be found without considering them, regard-
less of how many collisions the pieces make with
each other, or how they separately change their
velocity and their momentum. If there is no exter-
nal force on the system then the total momentum
of the system does not change. This is the law of
conservation of momentum.

Look at just two particles or objects colliding
with each other. Each will change its velocity,
and its momentum. But the sum of the momenta
(not the velocities!), i.e., the total momentum of
the two combined, will be the same before the
collision and after the collision.

This is the basis of our knowledge of all
kinds of collisions, whether they are between cars
or between the molecules of a gas.

EXAMPLE 19

The horse and the wagon

The way we use Newton’s second and third laws is
so important that we will go over it once more in this
example.

A horse pulls on a wagon.

(a) Describe the force of interaction between the
horse and the wagon.
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(b) Describe the forces on the system containing
both the horse and the wagon.

(c) Describe the forces on the system containing
only the wagon.

(d) Describe the forces on the system containing
only the horse.

Ans.:
(a) Newton’s second law deals with the motion of

just one object. If we want to know the acceler-
ation of that object we need to consider all the
forces on that object. We have to be careful not
to include forces that act on any other objects.

Newton’s third law deals with pairs of forces,
each acting on a different object. When a horse
pulls on a wagon, the wagon pulls on the
horse. Each of these two forces is an interac-
tion between the horse and the wagon. The
two forces have the same magnitude and are in
opposite directions.

(b) For the system containing both the horse and
the wagon the two interaction forces are inter-
nal forces. They add up to zero and do not con-
tribute to the sum of the forces on the system or
to the system’s acceleration.

We can now list the external forces on the
system. There are the usual two vertical forces,
the weight and the normal force. The horizontal
forces are the force of friction and air resistance.

(c) If we want to know the wagon’s acceleration,
we choose a system containing only the wagon.
Just one of the two interaction forces comes into
play, the force of the horse on the wagon, FHW.
There is also the force of friction on the wagon,

and air resistance, in addition to the two vertical
forces.

(d) If we want to talk about the horse, we choose a
system containing only the horse. As we count
the external forces on it, we need to include the
force on the horse by the wagon, FWH.

The force of friction acts to push the horse
forward. We can see that by looking at what
happens at the interaction between the horse’s
hoofs and the road. The horse pushes back on
the road with a force FHR. Paired to this force
by Newton’s third law is the force of the road
on the horse, FRH, forward.

While we dealt with the horse and the wagon
we ignored all of their internal structure. In other
words we have used a model in which each is a
particle. In the real world the horse is a wildly
complicated object whose internal motions we
can never know completely. Not only that, but
we even have trouble deciding what the external
forces are. The horse breathes, eats, eliminates,
and interacts with its environment in ways that
make it quite impossible to delineate its bound-
aries exactly. The model that we use does not
include these forces.

We know that we can ignore its internal
forces, the forces between its various parts and
between each pair of molecules. Each pair of
interaction forces is related by Newton’s third
law and adds up to zero.
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Even the wagon is hardly the rigid and inert
body that we might wish for to keep its descrip-
tion simple. It has wheels whose motion we
haven’t thought about. And on the microscopic
scale it is a collection of constantly moving
atoms and molecules. Again, a large part of the
simplification that allows us to deal with the
problem is that we can ignore the internal forces.

(The figure shows the internal forces between
the horse’s ears and its head.)

EXAMPLE 20

M
1 M

2

You are pushing two boxes along the floor with a
force of 100 N. The box on which you are pushing
has a mass of 12 kg and the other one has a mass of
8 kg. What is the force of the first box on the second
box, and the force of the second box on the first?
(Neglect friction and all other horizontal forces.)

Ans.:
We can find the acceleration most simply by first look-
ing at the system that includes both boxes, with their
combined mass of 20 kg. ΣF = Fpb = Ma, a = Fpb

M =
100 N
20 kg = 5 m/s2.

M
1 M

2

F
pb

Now we can apply Newton’s second law to the
lighter of the two boxes.

Since we are neglecting friction, the only
horizontal force on the box is F12. We already
found the acceleration to be 5 m/s2. F12 = Ma =
(8 kg)(5 m/s2) = 40 N in the x direction. By Newton’s
third law this is also F21.

M
1M

2

F
pbF

12
F
21

We can check this result by using the force
diagram for the heavier box.

100 − F21 = (12 kg)(5 m/s2), or F21 = 100 −
60 = 40 N, this time in the negative x direction.

EXAMPLE 21

An elevator whose mass is 250 kg hangs from a
cable. Find the force of the cable on the elevator in

the following situations. For each case draw a force
diagram, write the relation between the forces using
symbols only, and then substitute numbers for the
symbols to find the force exerted by the cable.

(a) The elevator is at rest.

(b) The elevator is moving down with a constant
velocity of 2 m/s.

(c) The elevator is moving up, and accelerates
upward with an acceleration of 1.5 m/s2.

(d) The elevator is moving up and slowing down
with an acceleration whose magnitude is 2 m/s2.

Ans.:

F
ce

F
Ee

a, b
F
ce

F
Ee

c
F
ce

F
Ee

d

(a) There are two forces on the elevator. Its weight,
Fee = Mg, and the force of the cable on the ele-
vator, Fce. Let up be positive. The net force
is Fce − Mg. Since the acceleration is zero, the
net force is zero, and Fce − Mg = 0. Fce = Mg =
(250)(9.8) = 2450 N.

(b) There is no acceleration. The answers are the
same as in part (a).

(c) Let up be positive again. The forces are Fce and
−Mg. Their sum is Fce − Mg, and it is equal to
Ma. Fce − Mg = Ma. Fce = Mg + Ma = 2450 +
(250)(1.5) = 2450 + 375 = 2.83 × 103 N.

(d) Again the sum of the forces (up) is Fce − Mg =
Ma.

The acceleration is downward, hence neg-
ative, equal to −2 m/s2. Fce = 2450 + (250)( −
2) = 2450 − 500 = 1.95 × 103 N.

We can also choose down as positive, so that
the acceleration is positive: The sum of the forces
(down) is Mg − Fce = Ma and Fce = Mg − Ma =
2450 − (250)(2) = 1.95 × 103 N, as before.

Later we will spend time with an example
that goes beyond mechanics and has the most
profound implications. Consider a roomful of
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air: billions of billions of molecules, most of them
moving with speeds far greater than any vehicles
on earth or in space, colliding with each other,
recoiling, and exerting forces on each other. But
if we take the whole amount of gas in the room
as our system, all of the forces that the molecules
exert on each other as they collide are internal
forces, pairs of forces that are related by New-
ton’s third law, and that add up to zero. Only the
forces from outside the system, by the walls, as
molecules bounce off them, need to be considered
in order to deal with the system as a whole. We
will see that this example opens the door to the
understanding of the relation between mechanics
and the phenomena of heat and temperature.

4.4 One more motion that
is everywhere: rotation

Uniform circular motion

When a particle does not move in a straight
line, even if its speed does not change, it has an
acceleration and so there must be a net force on it.

We will look at a particle moving with con-
stant speed in a circle to see what we can say
about its acceleration and about the force that
must act on it to keep it moving in its circle.
This kind of motion is called uniform circular
motion, where “uniform” refers to the constant,
or uniform speed.

θ

A
B

r

v
A

v
A

v
B

v
B

Δs θ

Δv

The left-hand part of the figure shows a par-
ticle and the circular path along which it moves.
As the particle moves from A to B, it moves
through a distance Δs along the circumference,
and the radius of the circle turns through an angle
θ. This angle, in radians, is equal to Δs

r . (For
motion all around the circle, through 360◦, the
number of radians is equal to the circumference
of the circle divided by its radius, or 2πr

r , so that
2π radians equal 360◦.)

The velocity, as a vector quantity, has both
magnitude and direction, and therefore changes
as the particle moves. At point A the velocity is vA
and at point B it is vB. The change in the velocity
between these two points is vB − vA, which we
call Δv. (Look at it as −vA + vB, i.e., go back-
ward along vA and then forward along vB. The
vector from the beginning of this path to the end
is Δv.)

The right-hand part of the figure is a vector
diagram that shows the three vectors vA, vB, and
Δv. The velocity vector remains at right angles
to the radius, and as the radius turns through
the angle θ, so does the velocity. The length (or
magnitude) of the velocity vector is the speed,
v, and for the motion that we are considering it
remains constant.

The angle (θ = Δs
r radians) between the radii

to A and B is the same as the angle between the
two velocities. The vector diagram shows that it
is also approximately equal to Δv

v , and becomes
closer to it as the angle gets smaller.

Hence θ = Δs
r and θ = Δv

v , so that Δs
r = Δv

v .
Dividing by Δt (the time interval during which
the particle moves from A to B), we get ( 1

r )(Δs
Δt ) =

( 1
v )(Δv

Δt ). This is the same as ( 1
r )(v) = ( 1

v )(a). We

can now solve for a to get a = v2

r .
It is not surprising that a is proportional to

v2. We know that a is close to Δv
Δt (and gets closer

to that as Δt and Δv get smaller). With larger
speed (v), the change in v (called Δv) increases.
In addition, as v gets larger, Δt (for the same dis-
placement) decreases. The two changes together
cause Δv

Δt , and hence a, to be proportional to v2.
This acceleration is called the centripetal

acceleration. (It means “pointing to the center.”)
When the angle θ gets smaller, Δv becomes per-
pendicular to vA (or vB), and is directed toward
the center of the motion. A net force with magni-
tude mv2

r (called the centripetal force) is required
to keep the particle moving in the circle with
radius r with speed v.

We know that a net force is necessary for an
object to move in a circle. Without one it would
move with constant velocity, i.e., with constant
speed in a straight line, in accord with New-
ton’s first law of motion. Now we see that for
motion in a circle with constant speed the force
has to point toward the center of the motion,
and have magnitude mv2

r . There needs to be a
centripetal (or center-pointing) force. This is not
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a new or additional force. Whatever the forces
on the object are, if the object is to move in a
circle with constant speed (in uniform circular
motion) their sum has to point to the center and
have magnitude mv2

r .
This is true regardless of the nature of the

interaction that leads to the circular motion. For
the moon going around the earth the centripetal
force is the gravitational force. That’s also true
for the earth going around the sun. For a ball
being swung in a circle at the end of a rope it is
the force of the tension of the rope. For a particle
in a cyclotron it is the magnetic force. In each of
these cases there is an object moving in a circle. In
each case the magnitude of the net force is equal
to mv2

r , regardless of the nature of the force.

EXAMPLE 22

Go to the PhET website (http://phet.colorado.edu)
and open the simulation Ladybug Revolution.

Choose the “Intro” tab. Check “Show velocity
vector” and “Show Acceleratin Vector.”

(i) Set the angular velocity to zero.
Drag the ladybug with the mouse. Observe

the vectors v and a.

(ii) Set the disk in motion with the slider at the
bottom. Set the angular velocity to about 150
degrees/s. Observe the two vectors.

Observe the effect on the two vectors of
changing the angular velocity and the ladybug
position.

(iii) Choose the “Rotation” tab.
Check “Show Ladybug Graph” “Show Plat-

form Graph,” and (θ, ω, v). Set ω to about
4 rad/s. The graphs include the values of ω and
v. Calculate r from them.

Check “ruler” and measure the radius, r,
at which the ladybug sits. Compare this to the
result of your calculation.

What are a and α?
Check the graphs that contain a and α, and

compare your results with those on the graphs.

(iv) Check “Show ladybug graph” and check the
graph θ, ω, x, and y and “Show X-Position” and
“Show Y-Position.” Reset all, and set θ to zero.
Set the platform in motion again and observe the
graphs of x and y. These are the x and y com-
ponents of the radius vector r, i.e., x = r cos θ

and y = r sin θ. Observe that they are similar

except for being displaced with respect to each
other along the time axis (or out of phase). At
θ = 0, sin θ = 0 and cos θ = 1. Both components
are said to vary sinusoidally. (Note that you can
change the horizontal and vertical scales of the
graphs with the buttons on the right.) Look for
the time of a complete revolution on the graph
and compare it to the value derived from ω. Use
the step function to compare and explore what
you see on the platform and on the graph for x
and y.

The sinusoidal variation is typical of oscilla-
tions in many parts of physics. We will see it for
masses on springs, sound, and other waves, and
for atomic and molecular vibrations. Motion in
which the position varies sinusoidally is called
simple harmonic motion.

EXAMPLE 23

Anja swings a ball at the end of a string so that
it moves in a horizontal circle. The ball’s mass is
0.3 kg. The radius of the circle is 1.2 m. The ball
travels around the circle in one second, i.e., it makes
one revolution per second. (Neglect the vertical
forces.)

(a) What is the magnitude of the force required to
make the ball move in the circle?

(b) What force acts on the ball to keep it moving in
the circular path?

(c) What pulls on Anja’s hand, and how hard does
it pull?

F
T

Ans.:
(a) The circumference of the circle is 2πr =

(2)(π)(1.2) = 7.54 m. The speed of the ball is
therefore 7.54 m/s. The force that is required
(the centripetal force) is Mv2

r = (0.3)(7.54)2
1.2 =

14.2 N.

(b) The force on the ball is that of the string. The
force exerted by the string is its tension of 14.2N.

(c) The string pulls on the ball toward the center of
the motion, i.e., toward Anja’s hand. At its other
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end it pulls on Anja’s hand toward the ball. As
long as we neglect the mass of the string, the two
forces have the same magnitude.

EXAMPLE 24

The astronaut Sally Ride (whose mass is 60 kg) is in
her spaceship in a circular orbit 100 km above the
surface of the earth.

(a) Use proportional reasoning to find her weight
in orbit.

(b) What is the interaction that keeps her in orbit?

(c) How large is the force on her?

(d) What is the time, T, for a complete orbit?

Ans.:
(a) Her weight on earth is Mge = (60)(9.8) =

588 N, where ge is the value of g on earth.
Since Mgo = G MMe

R2 , where go is the value of
g in orbit, g is proportional to 1

R2 . Hence ge
go

=(
R
Re

)2 =
(

6470
6370

)2 = 1.031. In other words, her

weight on earth is 3.1% greater than it is in this
orbit. Her weight in orbit is 570 N.

(b) The gravitational interaction keeps her in orbit.

(c) The force on her is the gravitational force, and
it is 569 N.

The spaceship is in orbit with her. There is
no force between her and the spaceship. This
gives rise to the (incorrect) description of her
as being “weightless.” Sometimes the interac-
tion between her and the spaceship is called the
“apparent weight,” which is then zero while she
is in orbit. According to our definition the weight
is equal to the gravitational force on her and is
not zero.

(d) We can find the time T for a complete revolution
from the relation for the centripetal force, which
here is the gravitational force, so that G MMe

R2 =
M v2

R .
We start by canceling M and dividing each

side by R, to get G Me
R3 = ( v

R )2. Then we can use
the fact that in the time T she and the space-
ship go a distance 2πR, so that 2πR = vT, or
v
R = 2π

T . We can substitute 2π
T for v

R to get
GMe
R3 = ( 2π

T )2, which we can turn around to get

T2 = 4π2R3

GMe
.

All that’s left is to put numbers in: Me =
5.98 × 1024 kg and G = 6.67 × 10−11 Nm2

kg2 .

Re = 6.37 × 106 m, so that R = Re + 0.1 ×

106 m = 6.47 × 106 m. Putting these numbers in
leads to T = 5.18 × 103 s or 86 min.

If we had used Re instead of R the result
would have been 84 min. We see that while the
height above the earth, of 100 km, seems quite
large to us, it changes the distance from the cen-
ter of the earth by only about 1 1

2 %. That’s why
satellites that travel reasonably close to the earth
all take about 1 1

2 h for one orbit.
The same considerations can be used for the

time of a complete orbit of a planet around the
sun. The fact that T2 ∝ R3 for the planets was
discovered by Kepler, and is known as Kepler’s
third law.

The orbits of the planets are actually ellipti-
cal, but sufficiently close to being circular that
the approximation of considering them to be
circular is quite close.

Angular momentum and torque

The momentum of an object or system describes
its linear motion. The momentum remains con-
stant unless an external force causes it to change.

There is an analogous quantity called the
angular momentum, for rotational motion. It
also remains constant, unless an external influ-
ence (a torque) causes it to change. The earth
keeps rotating around the sun, and the moon
around the earth, and in addition both keep spin-
ning, in accord with the law of conservation
of angular momentum. Angular momentum is a
fundamental property of electrons, protons, and
neutrons, and hence of the nuclei, atoms, and
molecules of which they are the parts. The angu-
lar momentum of an atom depends primarily on
its electrons. It plays a major role in determining
the atom’s properties.

As you can see, rotational motion is in some
ways more basic than linear motion. To describe
it in detail we will have to introduce some new
terms, but each of them will be analogous to the
corresponding term for linear motion.

Look at a single particle with mass m moving
with constant speed, v, in a circle whose radius
is r. Let’s start with angular displacement. This is
the angle θ through which the particle travels. We
will measure it in radians, so that θ = s

r , where
s is the distance along the circumference.

Now we can define the angular velocity (ω,
Greek omega) as the rate of change with time of
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r

F
r

θ

s

the angular displacement. ω = dθ
dt , which is also

equal to 1
r

ds
dt , or v

r .
The angular acceleration (α, Greek alpha)

follows, as the rate of change with time of the
angular velocity. α = dω

dt , which is also equal to
1
r

dv
dt , or to a

r .
All the relations between x, v, and a have

their counterparts in relations between θ, ω, and
α, and can be used in the same way. For instance,
as the relation corresponding to v = v0 + at we
can write ω = ω0 + αt to show how the angular
velocity varies with time when there is a constant
angular acceleration.

So far we have talked about a single particle,
but the same considerations apply to an extended
rotating object, as for example, a wheel.

EXAMPLE 25

The drive shaft of a car engine is rotating with an
angular velocity of 100 rpm (revolutions per minute).
It decelerates with a constant angular acceleration of
2 rad/s2 (radians per second squared). How long does
it take for the engine to come to rest?

Ans.:
First we have to see that all the quantities that we
need to use are in SI units. A revolution is 2π radians,
so that 100 rpm = (100)(2π) rad/min or 100

60 2π rad/s.
Now we can use ω = ω0 + αt, where the final angular
velocity, ω, is zero, the initial angular velocity, ω0,
is 200π

60 rad/s, and α = −2 rad/s2. (α has the oppo-
site sign from ω because the engine is slowing down.)
We turn the relation around to read t = ω−ω0

α
and

substitute the numbers to get t = 100π
60 = 5.24 s.

What takes the place of the force? If we
apply a force to our particle, tangential to the
circle in which it moves, it matters not only how
large the force is, but also where it is applied.
It will have a greater effect on the rotation if it
is applied further from the center. We therefore
define the torque (τ, Greek tau) as Fr, where F is

the tangential force and r is the radius at which
it is applied.

We see that τ = Fr = mar = m a
r r2, or τ =

mr2α. This has the same form as Newton’s sec-
ond law, F = Ma, with torque taking the place
of force and angular acceleration taking the place
of the linear acceleration. The quantity mr2

takes the place of the mass, and is given the
somewhat cumbersome name moment of iner-
tia with the symbol I. The torque produces an
angular acceleration. The size of the angular
acceleration depends on the moment of inertia.
τ = Iα.

We can extend the description from that of a
particle to that of an extended object. The torque
and angular acceleration are the same as before.
The moment of inertia is the sum of the moments
of inertia for all the pieces of the object. We can
write it as I = Σmr2, where m is the mass of one
piece, at a distance r from the axis about which
the object rotates, and the symbol Σ stands for
“sum.” The moment of inertia is the quantity
that for the rotational motion of an extended
object is analogous to the mass for linear motion.
It depends on how the mass is distributed in the
object.

If the mass is distributed in discrete pieces,
we can simply add mr2 for each to find Σmr2.
It may also be distributed continuously, as in a
disk or wheel, or sphere. It is then often possible
to find a simple expression for the moment of
inertia. For example, the moment of inertia of a
disk of mass M with radius R, rotating about an
axis through its center, is 1

2 MR2.
The linear momentum is Mv. In analogy we

can now define the angular momentum as Iω, the
product of the moment of inertia and the angular
velocity. For a single particle moving in a circle
it is equal to (mr2)( v

r ), or mvr.
(There is also rotational kinetic energy, anal-

ogous to the linear kinetic energy 1
2 Mv2. It is

equal to 1
2 Iω2. More about that in Chapter 6.)

Go to the PhET website and open the simulation
Torque.

Go to the tab “Moment of Inertia.” Explore
the relation between torque, moment of inertia,
and angular acceleration. Set a torque and observe
the acceleration of the platform. Look at the values
of these three quantities on the graph and check
that their relation is what you expect from the rota-
tional analog of Newton’s second law of motion.
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With the tab Torque you can explore the rela-
tion between the force and the torque, and with
the tab Angular Momentum the relation between
angular velocity, moment of inertia, and angular
momentum.

The moment of inertia of a uniform solid disk
is 1

2 MR2. Explore the relation between M, R, and
I by varying these quantities with the sliders.

EXAMPLE 26

A skater has a moment of inertia of 25 kg m2 when
she stretches out her arms. She starts out with an
angular velocity of 3 rpm. She then draws her arms
in and her moment of inertia is reduced to 10 kg m2.
What is her angular velocity now? (Assume that the
external torque is zero.)

Ans.:
Angular momentum is conserved, so that I1ω1 =
I2ω2, or ω2

ω1
= I1

I2
= 25

10 = 2.5. In the expression ω2
ω1

it doesn’t matter what the units are as long as they
are the same in the numerator and the denomina-
tor. We can therefore leave them as rpm to find that
ω2 = 2.5ω1 = 7.5 rpm.

The table shows the various linear quantities
and their rotational analogs.

Linear Rotational

x θ = s
r

v ω = v
r

a α = a
r

F τ = Fr

M I = Σ mr2

Mv I ω

1
2 Mv 2 1

2 I ω2

F = Ma τ = I α

The angular momentum
of particles

The proton, neutron, and electron each has angu-
lar momentum at all times, called their spin.
This spin angular momentum is also called their
intrinsic angular momentum, to indicate that it
is always there, regardless of any other motion.
If an electron is part of an atom it may also
have orbital angular momentum. Similarly the

protons and neutrons move in a nucleus and may
have orbital angular momentum in addition to
their ever-present intrinsic spin angular momen-
tum. The amounts of the angular momentum of
an atom and a nucleus are among their most
important properties.

We have to remember that the picture of the
particles as little balls spinning about an axis is
not correct. This is also true about the picture of
an atom, as first envisioned by Bohr, with elec-
trons in orbit, similar to planets about the sun.
The picture of a spinning particle, or of an atom
with electrons in orbit, may be a simple visual-
ization. But a model in which ordinary (classical)
mechanics is used for them does not lead to the
correct (observed) results.

We will return to these questions later.

EXAMPLE 27

In its lowest energy state (the ground state) the helium
atom has an electronic angular momentum of zero.
Explain.

Ans.:
Although each of the two electrons in the helium atom
has a spin angular momentum, the spins are in oppo-
site directions. A mechanical picture is inappropriate
for atoms, but in the ground state the two angular
momenta nevertheless add up to zero. Each electron
also has an orbital angular momentum. They are also
in opposite directions.

As an aside we can mention the nuclear spin
angular momentum. Most commonly, the nucleus of
helium is an alpha particle, which consists of two pro-
tons and two neutrons. Again the total spin is zero.
In 1.4 × 10−6% of the atoms, however, the nucleus
consists of two protons and only one neutron, to form
the isotope 3He, with a net spin angular momentum.

4.5 Summary

Everything we do and everything that happens
around us involves forces. The basic feature of
forces is that they give rise to acceleration. This
is embodied in the relation �F = Ma, Newton’s
second law of motion. Here �F is the symbol
for the vector sum of all the forces acting on an
object or system, or the net force, and a is the
acceleration. M is the object’s mass. It determines
the magnitude of the acceleration.
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In the SI system of units M is measured in
kilograms (kg) and a in m

s2 . If these units are

used, the unit for force, equal to kg m
s2 , is the

newton (N).

Here are some special cases: When �F is zero
(when the forces on an object add up to zero) the
acceleration is zero. The object may be at rest, but
it can also be in motion with constant velocity.
(There is a nonzero acceleration only when the
velocity changes.)

When �F is constant, the acceleration is
also constant. In that case the relations for con-
stant a apply: v = v0 + at, x = v0t + 1

2 at2, v2 =
v2

0 + 2ax.

When all the forces are along the same line,
they can be added by using only positive and
negative numbers (“algebraically”). If they are
not along one line they have to be added as vec-
tors. This can be done in two ways. One is to
draw the vectors end to end, one arrow follow-
ing the other. Their sum is then represented by
the single vector from the beginning (the “tail”)
of the first to the end (the arrowhead) of the
last.

The other method of adding vectors is to
use a coordinate (x–y) system and to decom-
pose each vector into its x component and its
y component. All the x components are then
added algebraically to give ΣFx and the y compo-
nents are added to give ΣFy. These two quantities
are the components of the single vector �F, the
vector sum of all the forces.

To find �F we draw a force diagram. This is
a figure that shows vectors representing each of
the forces (and nothing else!). The force diagram
helps us to visualize the magnitude and direction
of all the forces acting on an object.

The momentum of an object or system is its
mass times its velocity. Since it is proportional to
the velocity, it is also a vector quantity. If there is
no net force on a system or object, its momentum
is constant. This is the law of conservation of
momentum.

When two objects (A and B) interact, the
force of A on B has the same magnitude as the
force of B on A and is in the opposite direction.
This is Newton’s third law of motion.

Angular motion is represented by the angu-
lar displacement, θ, the angular velocity, ω, equal
to dθ

dt , and the angular acceleration, α, equal

to dω
dt . In analogy to linear motion the angular

velocity is the rate of change with time of the
angular displacement.

“Uniform circular motion” is motion of a
particle in a circle with constant speed. It is not
constant velocity, because the direction of the
velocity keeps changing. The acceleration also
has constant magnitude and changing direction.
Its direction is toward the center of the motion. It
is called the “centripetal” (“toward the center”)
acceleration. Its magnitude is related to the speed
and radius by the relation a = v2

r .

In order for a particle to move in a circle
with uniform circular motion there must be a net
force toward the center (the “centripetal force”),
whose magnitude is equal to mv2

r .

Just as force gives rise to acceleration, torque
gives rise to angular acceleration. And just as the
mass of an object determines how large the accel-
eration of an object is when a net force acts on it,
the moment of inertia determines how large the
angular acceleration of a rotating object is when
a net torque acts on it. The moment of inertia is
a measure of how the mass is distributed.

Newton’s second law also holds for rota-
tional motion. Analogous to �F = Ma there is
the relation for angular motion Στ = Iα, where
Στ is the sum of all the torques, I is the moment
of inertia, and α is the angular acceleration.

The angular momentum (analogous to the
linear momentum Mv) is Iω. For a system with no
net external torque on it, the angular momentum
remains constant. This is the law of conservation
of angular momentum.

To find the moment of inertia of an object
with respect to an axis, we have to imagine cut-
ting it up into pieces of mass m, each a distance
r from the axis, and adding the values of mr2 for
each piece to get the sum I = Σmr2.

There is also kinetic energy associated with
rotating objects. The angular kinetic energy is
1
2 Iω2, analogous to the linear kinetic energy,
1
2 mv2. (See Chapter 6.)
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4.6 Review activities
and problems

Guided review

1. A book is at rest on a table. What are the
forces on it?

2. A car whose mass is 2000 kg accelerates with
a = 2.5 m/s2. What is the net force on it?

3. Maja’s weight is 120 pounds. What is her
mass in kg and her weight in N?

4. A box is being pulled forward horizontally
along a table by a force of 10 N. The force of
friction is 1.5 N.

(a) Make a diagram that shows all four
forces on the book.

(b) Write the mathematical statement of
Newton’s second law with these forces.

5. A wagon whose mass is 12 kg is being pulled
by two horizontal forces. The first is 50 N at 30◦
to the x-axis. The second is 70 N at right angles
to the first. What is the magnitude of the wagon’s
acceleration?

50  N

70  N

x
30o

6. F1 and F2 are two horizontal forces of 60 N
each, acting on a wagon. They are at 45◦ to
the x-axis and at right angles to each other. A
third force, F3, also 60 N, acts along the positive
x-axis. What are the magnitude and direction of
the net force on the wagon?

F
3

F
1

F
2

7. For the three forces of the previous question,
find F1 + F3 − F2.

8. A box whose mass is 23 kg is being pulled hor-
izontally along the floor by a rope with a force
of 120 N. The force of friction is 32 N.

(a) Draw a force diagram, indicating each
of the forces on it with a symbol that has the
appropriate two subscripts.

(b) Find the net force on the box, and its
acceleration.

9. Go to the PhET website and open the simula-
tion Forces and Motion.

Choose an object other than the crate.
Answer the same questions as in the example.
(For the first three parts choose a new appropri-
ate applied force.)

10. Repeat Question 8 with the rope at an angle
of 20◦ to the horizontal. Assume that the coeffi-
cient of friction (the ratio of the force of friction
to the normal force) remains the same.

11. Go to the PhET website and open the simu-
lation The Ramp: Forces and Motion.

(a) Choose the Intro tab.
Choose the file cabinet. Find the largest

angle at which it does not slide down. What
are the force of friction and the normal force at
this angle? Check that their ratio is the marked
coefficient of friction.

(b) Set the ramp angle at 10◦. What is the
force of friction now? Why is it not equal to μN?

(c) Go to Force Graphs. Put the file cabi-
net on the ramp, set the angle at 20◦, and apply
a force of 700 N. Push to go. Calculate all the
forces. Compare your numbers to the ones on
the screen.

12. A force in the x − y plane whose magnitude
is 12 N makes an angle of 125◦ with the ( + x)
direction. What are its x and y components?

13. A car whose mass is 1800 kg is at rest on
a road that is inclined at an angle of 8◦ to the
horizontal. Draw a force diagram and find the
magnitude and direction of each of the forces on
the car.

14. A toboggan slides down a hill inclined at
20◦ with an acceleration of 1.5 m/s2. Draw a
force diagram showing all the forces. What other
information must you know to calculate the
magnitude of each of the forces?

15. A stone falls vertically from a roof straight
down to the ground. (Air resistance may be
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neglected.) Draw a force diagram for the time
that it is in the air. What is its acceleration?

16. A rifle bullet is shot out of a gun that points at
an angle of 30◦ to the horizontal. For the moment
that the bullet is at its highest point:

(a) Draw a force diagram.
(b) What is the direction of is velocity?
(c) What are the magnitude and direction of

its acceleration?

17. Two railroad cars, each with a mass of
104 kg, are connected to each other. They are
being pulled horizontally by a locomotive with
an acceleration of 0.1 m/s2. (Neglect friction.)

(a) Draw a force diagram for each of the two
cars and for the system containing both.

(b) Find the magnitude of each of the forces
on your force diagrams.

18. A car whose mass is 2000 kg moves with
a velocity of 30 m/s. It hits a stationary car that
has the same mass. (Ignore all horizontal forces
except for the ones that the two cars exert on
each other.)

(a) The two cars stick to each other after
the collision. What is their velocity after the
collision?

(b) In a different collision, with the same
start, the cars do not stick to each other. After
the collision the car that was originally at rest
is observed to move with a velocity of 10 m/s
at an angle of 35◦ with the original motion of
the other car. Draw vector diagrams that show
the momentum vectors before and after the col-
lision. Find the momentum and velocity after the
collision of the car that was originally moving.

19. Two railroad cars, each with a mass of 2 ×
104 kg, are being pushed by a locomotive with
a force of 1.5 × 105 N. (Neglect friction.)

(a) Draw force diagrams for each of the two
cars and for the system containing both.

(b) Find the magnitudes of each of the forces
on your force diagrams.

20. You are pushing three equal boxes (8 kg
each) along the floor with a force of 200 N.
(Neglect friction.) What are the two horizontal
forces on the middle box?

21. A boulder whose mass is 450 kg is being
lifted vertically by a chain with an acceleration
of 0.2 m/s2.

(a) Draw a force diagram for the boulder.
(b) Find the magnitudes of each of the forces

on your diagram.
(c) The boulder is now moving down and

slowing down with an acceleration whose mag-
nitude is 0.8 m/s2. What is the direction of the
acceleration? Draw a force diagram and find each
of the forces on it.

22. Go to the PhET website (http://phet.colorado
.edu) and open the simulation Ladybug Revolu-
tion.

Choose the “Rotation” tab.
Check “radians,” “Show Ladybug Graph,”

“Show Platform Graph” “Show Acceleration,”
and uncheck the others.

Put the ladybug in the green zone and mea-
sure its radius with the ruler.

(a) Set the disk in motion with an angular
velocity of about 3 rad/s.

Calculate the centripetal acceleration.
Compare your value of the centripetal accel-

eration with that shown on the graph of a(t).
(b) Check “X-Acceleration” and “Y-Accel-

eration.” Describe and explain the difference
between the graphs of these two quantities.

23. A car travels in a circle whose radius is 20 m,
with a speed of 25 m/s.

(a) What is the magnitude of the car’s accel-
eration?

(b) What is the nature (origin) of the hor-
izontal force on the car? (What is exerting the
force?)

24. (a) At what height above the surface of the
earth is an astronaut’s weight half of what it is
on earth?

(b) What is the time of an orbit of a satellite
around the moon close to the moon’s surface?
(What quantities do you have to look up to be
able to answer this question?)

25. A flywheel speeds up from rest, with an
angular acceleration of 1 rad/s2. What is its angu-
lar velocity after one minute in rad/s and in rpm
(revolutions per minute)?

26. A disk with a moment of inertia of 3 kg m2

spins with an angular velocity of 8 rad/s. A sec-
ond disk, with a moment of inertia of 2 kg m2 is
initially at rest, but is free to rotate on the same
shaft. It is now pressed against the first disk, as
in a clutch. What is the angular velocity of the
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combined system of the two disks in contact with
each other?

27. The spin angular momentum of the ground
state of the lithium atom (Z = 3) and that of the
sodium atom (Z = 11) is each equal to that of a
single electron. Explain why this is so.

Problems and reasoning
skill building

1. It is sometimes said that when you travel
around a circle in a car there is a “centrifugal”
force that pushes you outward. What is it that
really happens?

2. A roller coaster has a part with a vertical cir-
cular loop where, at its top, the car travels upside
down.

(a) Draw a force diagram of the forces on
the car at the top of the loop.

(b) What must be true about the speed so
that the car and passenger do not fall out?

3. A skier comes down a 10◦ slope.
(a) Draw a force diagram of the skier as he

comes down the slope. Do not neglect friction.
(b) What measurements could you make to

determine if there is any friction between the skier
and the slope? If there is friction describe how
you could measure the force of friction.

4. Maya pulls three of her children on a sled.
You are standing nearby with a meterstick and a
stopwatch.

(a) Draw a force diagram of the sled with the
children on it (do not neglect friction)

(i) when she pulls horizontally
(ii) when she pulls at an angle of 30◦ with

the horizontal
(b) What is the relation between the forces

when she pulls horizontally
(i) when the sled moves with constant

velocity
(ii) when the sled accelerates

5. You pull on a rope so that it exerts a 30 N
force on a 20 kg sled that moves on a level
frictionless icy surface to the right. The force
is directed at an angle of 30◦ above the hori-
zontal.

(a) Draw a force diagram of the sled.
(b) A student constructed the equations

below to describe the forces and motion of the

sled, using SI units. Are these descriptions con-
sistent with the word description? If not, correct
the mathematical descriptions. (Let the direction
to the right be the positive x direction and let up
be the positive y direction.)

x : +30 = 20ax

y : Fnormal − (20)(9.8) − 15

(c) At time T1 the sled is moving at a velocity
of 1.2 m/s to the right. How fast will it be moving
two seconds later?

6. (a) A 4 kg block is pulled from rest along a
horizontal surface by a rope with a force of 10 N.
It experiences a constant frictional force of 2 N.
How far has the block moved in the first three
seconds?

(b) If the rope in part (a) breaks at t = 3 s,
what will the block do: stop immediately, slow to
a stop, or continue moving at a constant speed?
Explain your answer.

7. A 15 N thrust is exerted on a 0.5 kg rocket
for a time interval of 8 s as it moves straight up.
(Neglect all forces except this thrust and the force
of gravity.) The rocket then continues to move
upward as its speed reduces steadily to zero.

(a) Draw force diagrams of the rocket (i) for
0 < t < 8 s and (ii) for t > 8 s.

(b) Describe the motion of the rocket by
drawing graphs of v vs. t and a vs. t. You may
assume that the rocket does not go so high that
g changes significantly.

(c) What is the maximum height that the
rocket attains?

8. The figure shows the force diagram of a 0.9
kg object moving horizontally. F1 = 10 N, F3 =
4 N, and θ = 30◦.

F3 F1

F4

F2

θ

(a) Determine the magnitude of F2 and F4 if
the object is moving horizontally with constant
velocity.



86 / Forces and Motion: Newton’s Framework

(b) Find the acceleration if F2 is 4 N.
(c) Describe a physical situation that could

be represented by this diagram. What is the
source of each of the three forces?

9. Three different motions are described in the
diagram: (i) shows a block accelerating down
an incline, (ii) is a projectile at the top of its
trajectory (neglect air resistance) and (iii) is a
car moving to the right and slowing down with
constant acceleration.

(i) (iii)(ii)

(a) For each of the three motions draw a vec-
tor v that shows the direction of the velocity and
a vector Fnet that describes the net force.

(b) For each of the three cases specify a coor-
dinate system and sketch a graph that describes
the acceleration as a function of time.

10. For each of the force diagrams, find Fnet

in terms of the magnitudes F1, F2, F3 and the
angle θ.

θ θ θ

F
1

F
1

F
2

F
2

F
3 F

3

11. For each of the following situations:
(a) Draw a pictorial representation including

a symbolic representation of all the informa-
tion you are given and the assumptions that you
make.

(b) Draw a force diagram.
(c) Find ΣFx and ΣFy.
(i) A hockey puck is pushed horizontally

with a force Fstick on puck across the ice. (Neglect
friction.)

(ii) A ball falls through the air.
(iii) A ball has been thrown upward and is

now moving up.

12. A hockey puck of mass M is given a horizon-
tal push of magnitude Fstick on puck.

(a) At what rate does its speed change?
(b) Use reasonable values to get numerical

results. Is the answer reasonable?

13. A crate of unknown mass is pulled upward
by a rope. The tension in the rope is 22 N and the
crate accelerates upward at a rate of 1.2 m/s2.

Determine the mass of the crate.

14. An elevator of unknown mass moves upward
with a constant velocity v0. The tension in the
cable pulling the elevator is Fre (Frope on elevator).

(a) Draw a pictorial representation including
a symbolic representation of all the information
you are given and the assumptions that you make.

(b) Draw a force diagram.
(c) Write a mathematical descriptions that

allows you to determine the mass of the elevator.
(d) v0 = 3 m/s up and Fre = 5000 N. Deter-

mine the mass. Is your answer reasonable?

15. A child with a mass of 40 kg stands on
a spring scale inside an elevator. For each of
the scenarios below, draw a force diagram of
the forces acting on the child and calculate the
reading of the scale in newtons.

(a) The elevator is at rest.
(b) The elevator is accelerating downward

at 3 m/s2.
(c) The elevator is moving upward at a

constant velocity of 10 m/s.
(d) The elevator is accelerating upward at

2 m/s2.
(e) For which scenario does the child feel the

heaviest? The lightest?

16. Two boxes sitting on a frictionless surface
are connected to one another by a string of neg-
ligible mass. Box 1 has a mass of 5 kg and Box 2
has a mass of 10 kg. The boxes are being pulled
to the right with a constant force of 3 N.

2 1

(a) Draw force diagrams for each box and
for the system consisting of both boxes.

(b) Determine the tension in the string con-
necting the boxes.

(c) Find the acceleration of the system.
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17.

3 2 1

Three boxes sitting on a frictionless surface
are connected to one another by strings of negli-
gible mass. Box 1 has a mass of 5 kg and Box 3
has a mass of 2 kg. The boxes are being pulled to
the right with a constant force of 22 N and the
acceleration of the entire system is 2 m/s2.

(a) What is the mass of Box 2?
(b) Draw a force diagram for each box and

for the system consisting of all three of them.
(c) Determine the tension in each string.

18. Two boxes sitting on a frictionless surface
are connected to one another by a string of neg-
ligible mass. Box 1 has a mass of 4 kg and Box 2
has a mass of 8 kg. The boxes are being pulled to
the right with a constant force of 3 N.

1
2

(a) Draw a force diagram for each box and
for the system that contains both.

(b) Determine the acceleration of Box 1.
(c) How long does it take Box 1 to reach the

end of the table, 2 m away?

19. A rope is causing an object to accelerate
upward. Design an experiment to measure the
force of the rope. You have a watch, a bathroom
scale, and a measuring tape.

20. (a) Can the velocity and the net force ever
point in opposite directions? If so, describe a
motion where this occurs.

(b) Can acceleration and net force vectors
ever point in opposite directions? If so, describe
a motion where this occurs.

(c) Is it possible for an object to have zero
velocity and also be accelerating? If so, describe
a motion where this occurs.

(d) What must be true of the directions of
the acceleration and the velocity if an object is
speeding up?

(e) What must be true of the directions of
the acceleration and the velocity if an object is
slowing down?

21. A centrifuge rotates at 40,000 rpm. The bot-
tom of a test tube rotates in it in a circle whose
radius is 9 cm. The test chamber contains a
sample whose mass is 5 g.

(a) What is the acceleration at the 9 cm
radius?

(b) What force must the bottom of the test
chamber exert on the sample?

22. A car moves with constant speed in a circular
path around a corner on a horizontal road.

(a) What is the force that holds the car in its
circular path?

(b) The car’s speed is now increased by
50%. By what factor must the horizontal force
increase?

23. (a) What is the centripetal acceleration on a
100 kg person at the equator resulting from the
earth’s rotation?

(b) What percentage of the person’s weight
is the centripetal force?

(c) What is the interaction that provides the
centripetal force?

24. What is the centripetal force on a 100 kg
person resulting from the earth’s motion around
the sun? What percentage of the person’s weight
is this?

25. A skater has a moment of inertia of 40 kg m2

when she stretches out her arms. She starts out
with an angular velocity of 70 rpm. She then
draws her arms in, and her moment of inertia
decreases to 10 kg m2. What is her angular veloc-
ity now? (Do you need to convert the units of rpm
to SI units?)

26. A beetle whose mass is 2 g sits on a turntable
at a distance of 12 cm from the center. The
turntable is rotating at 33 rpm.

(a) What are its acceleration and centripetal
force?

(b) What is the interaction that provides the
centripetal force?

27. A rock at the end of a string is being swung
in a circle with higher and higher speed until the
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string breaks. Describe the motion after the string
breaks.

28. A torque of 30 Nm is applied to an engine
shaft that is originally at rest. Its moment of iner-
tia is 8 kg m2. What is its angular velocity after
10 s?

29. A car engine is rotating with an angular
velocity of 100 rpm. It then decelerates with an
angular acceleration of 2 rad/s2. How long does
it take to bring the engine to rest?

30. Two spaceships are next to each other, both
in the same circular orbit around the earth. The
mass of the first is three times the mass of the
second. Which of the following are the same and
which are different for the two spaceships?

velocity
acceleration
gravitational force
centripetal force

31. A mouse sits on a turntable 20 cm from
the center. The coefficient of static friction is
0.2. The angular velocity increases steadily from
zero. At what angular velocity does the mouse
slide off?

32. Samantha swings a ball at the end of a string
in a circle. The ball’s mass is 0.2 kg. It is in uni-
form circular motion with a radius of 1.5 m and
an angular velocity of 1.2 rps.

(a) What are the magnitude and direction of
the centripetal force?

(b) Draw a vector diagram that shows the
centripetal force, the weight, the tension in
the string, and the relation between these three
vectors.

(c) What is the angle between the string and
the horizontal?

(d) How would the angle change if the ball
had twice the mass?

33. A geosynchronous orbit is one where a satel-
lite rotates at the same rate as the earth so that
it is always over the same spot with respect to
the earth. How far is it from the center of the
earth? (Start with the force relation. Then find
the relation for the period T.)

34. It takes 5 s for the disk of a record player
to accelerate from rest to an angular velocity of
33 rpm.

(a) What is the angular acceleration?

(b) How many revolutions does the disk
make in this time interval?

35. The wheels on your bicycle have a diameter
of 55 cm.

(a) What is their angular velocity in rps when
you ride at 15 mph (=6.7 m/s)?

(b) What is the angular acceleration if you
reach that speed in 5 s, starting from rest?

(c) How many revolutions does the wheel
make in that time?

Multiple choice questions

1. While rock climbing, a 50 kg woman falls off
a ledge. She is moving down at a speed of 4 m/s
when she lands in a bush that stops her fall in
0.40 m. The magnitude of the average force that
the bush exerts on her body as she sinks into the
bush is closest to

(a) 200 N
(b) 500 N
(c) 2000 N
(d) 1500 N
(e) 1000 N

2. A rope exerts a tension force T on a crate that
is initially at rest on a horizontal frictionless sur-
face. When the crate reaches a speed of 6 m/s the
tension is abruptly reduced by one-half to T

2 . Just
after the tension is reduced, the speed

(a) decreases abruptly to 3 m/s
(b) continues to increase at half the rate
(c) stops after a short delay
(d) decreases to 3 m/s after a short delay
(e) continues to increase at the same rate.

3. At an amusement park a long slide has a sticky
portion at the end designed to slow children
down before they reach the end. Which of the
force diagrams best represents the children while
they are on the sticky portion before they come
to a stop?

(a) (b) (c) (d)

4. Marsha is pulling the front of a sled with a
force of 150 N. The sled is on ice and its mass
is 45 kg (that includes the mass of her younger
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brother). The rope is at an angle of 20◦ with the
ground. Ignore all effects of friction.

A student represented this situation mathe-
matically as follows, using SI units:
x direction: 150 = 45ax
y direction: Fnormal − (45)(10) = (45)(0)

Did the student label anything wrong or
forget to include something? Circle all of the cor-
rections that should be made (there may be more
than one).

(a) 150 should be 150 sin 20◦.
(b) 150 should be 150 cos 20◦.
(c) ay is not zero.
(d) There is a 150 sin 20◦ term missing in

the y direction.
(e) The student did not make any mistakes.

5. Three forces, X, Y, and Z, act on a mass of
4.2 kg. The forces are approximately X = 2 N
toward the east, Y = 5 N acting 45◦ north of
east, and Z = 3.5 N acting south.

The direction of the net acceleration is close
to being

(a) east
(b) 20◦ north of east
(c) north
(d) 10◦ north of east
(e) 44◦ north of east.

6. When a particle moves in a circle with con-
stant speed, its acceleration is

(a) increasing
(b) constant in direction
(c) zero
(d) constant in magnitude
(e) constant in magnitude and direction.

7. A rock is being swung in a circle at the end of
a string, with higher and higher speed, until the
string breaks. What is the motion of the rock just
after that?

(a) spiraling inward
(b) spiraling outward
(c) tangential
(d) radial
(e) none of the above

Synthesis problems and projects

1. What is the mathematical relation that shows
that two spaceships in the same circular orbit are
moving with the same speed?

2. You are a ski coach estimating the speed of
a skier as she approaches a ski jump. You would
like to know whether friction is negligible. You
know the angle that the slope makes with the
horizontal and you know the length, L, of the
ramp. You have a digital video of the skier as she
goes from rest down the ramp until she makes her
jump. You also have a stopwatch and a measur-
ing tape. What can you do to determine whether
friction is negligible? What assumptions are you
making?

s

3. A mouse sits on a horizontal turntable that
moves with angular velocity ω.

(a) What is the origin of the horizontal force
that keeps the mouse from sliding off?

(b) What is the maximum value of that force,
i.e., the value beyond which the mouse will slide
off?

(c) What is the mouse’s acceleration while it
is sitting on the turnable?

(d) Write down the relation between the
answers to parts (b) and (c) in terms of ω and
R, but not v.

(e) The angular velocity at which the mouse
begins to slide is proportional to Rn. What is the
value of n?


