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We have applied Newton’s laws of motion to the objects they were meant for:
objects that are large enough to see or feel. In this chapter we use them to
describe the mechanics of atoms and molecules. As we do that we have to keep in
mind that Newton’s laws and classical mechanics apply in the microscopic realm
only to a limited extent, and that the ideas and methods of quantum mechanics
may be necessary.

So far we have applied Newton’s laws to “objects” without considering the
material that they are made of or their internal structure.To treat them in terms of
their atoms and molecules takes us from a few simple particles and unchanging
objects to composite objects that consist of very large numbers of particles.The
real systems are so complex that we approximate them with models, invented,
imagined systems that, however, retain the essential properties of the systems
that we seek to understand.
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We begin this chapter by introducing the model called the ideal gas. It is an
enormously fruitful model, which describes some of the most important proper-
ties of real gases, and, to some extent, also those of other materials. It also
provides a bridge to a seemingly entirely different subject, that of heat and
temperature.

In addition, it shows the correspondence between two very different aspects
of the world around us. On the one hand there are the large-scale objects of
our direct sensory experience. Our instruments show us that underlying this
macroscopic world is a microscopic world that we are normally not aware of, the
world of moving, vibrating, rotating, colliding atoms and molecules, absorbing,
emitting, and exchanging energy.

7.1 Ideal systems and models:
the ideal gas

How can we get started talking about the vastly
complex real world? We know that we need to
talk about one that is simpler, a model system,
sometimes called an ideal system. Let’s review
the rules of the game. We decide what the model
is and how it works. It is an invented system
that shares some of the characteristics of the
corresponding system in the real world.

The words ideal and model describe a sys-
tem with properties that we make up and laws
that we prescribe. We set the rules that we need
to calculate the properties and behavior of our
model system.

We can then compare the model and the real
material to see to what extent their properties
overlap. We can also ask what the model predicts
for behavior under conditions that were not orig-
inally considered, and to see how the ideal and
the actual systems then compare.

Here is the model that we will look at in
some detail: it’s a gas whose constituents (its
atoms or molecules) are particles, i.e., they have
no size or internal structure. They exert forces
and experience forces only when they touch each
other or the walls of their container. They move
in accord with the laws of Newtonian mechanics.
This model is called the ideal gas.

A real gas is very different. Its smallest units
may be molecules, composed of two or more
atoms, or single atoms, consisting of nuclei and
electrons. They are not zero-size particles, and
they exert forces on each other even when they
don’t touch. Nevertheless, the ideal-gas model
describes and predicts the behavior of real gases
very well under many circumstances.

Bouncing molecules: the
microscopic point of view

The basic feature of the model that we call the
ideal gas is that its components are always in
motion and have only kinetic energy. They have
no internal structure, no internal motion, and
no internal energy. They exert no forces on each
other except when they touch, so that there is no
mutual potential energy. Since the model requires
that these elementary components are point par-
ticles with no internal structure, it doesn’t matter
whether we call them atoms or molecules. (We’ll
call them molecules.) The figure shows a portion
of a gas with just four molecules.

When the molecules collide with each other
they can interchange energy and momentum in
accord with the laws of conservation of energy
and momentum. The total momentum of the sys-
tem of which they are parts does not change.
Neither does the total kinetic energy, since we
have decided that in this model there is no other
kind of energy.

When we put the gas in a box or other con-
tainer the molecules bounce off the walls. At each
bounce the wall exerts a force on a molecule.
From Newton’s third law we know that there is at
the same time a force by the molecule on the wall.
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Our aim is to relate what the molecules
are doing, as described by their microscopic
variables, namely their velocities and kinetic
energies, to the macroscopic variables that we
observe and measure directly, namely the pres-
sure (equal to the average force on the walls
divided by the area of the walls) and the volume
of the container.

We start with a single molecule moving back
and forth in a cubical box whose sides have
length L and area A = L2, with volume V = L3.
The molecule moves with an initial velocity vi
in the x direction toward a wall that is at right
angles to the x-direction. We assume that we can
neglect the effect of the gravitational force on
its path.

Like a ball hitting a solid wall at right angles
to it, the molecule will bounce back along the
same line, with its kinetic energy unchanged,
and the direction of its momentum reversed.
The kinetic energy is a scalar quantity that does
not depend on direction, but the velocity and
the momentum are vector quantities. The initial
momentum vector mvi (where m is the mass of
a molecule) and the momentum vector after the
collision, mvf, differ by the vector m�v, where
vi+ �v = vf.
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Since all the velocities and momenta are
along the x direction, we can call the initial
momentum mvx and the final momentum −mvx.
The change in momentum is −2mvx, with a mag-
nitude of 2mvx. Between a collision with one
wall and a collision with the opposite wall the
molecule moves a distance L in a time that we’ll
call Δt, so that vxΔt = L, or Δt = L

vx
.

mvx

–mvx

L

To find the force exerted by the molecule on
the wall we use Newton’s second law of motion.
Instead of Fnet = ma we use the momentum form.
Since a = Δv

Δt (the change in the velocity divided
by the time it takes for the velocity to change),
ma is equal to Δ(mv)

Δt , i.e., the force is equal to
the change in momentum divided by the time
during which the momentum changes. For our
single molecule the magnitude of the momentum
change, Δ(mv), is 2mvx at each collision, and this
happens once in every time interval Δt, on one
wall and then on the other, so that the average

force is Δ(mv)
Δt = 2mvx

L / vx
= 2mv2

x
L .

The molecule travels back and forth and
contributes to the pressure on both walls. To
find the pressure we need to divide the force by

the area of both walls, 2L2, to get 2mv2
x

2L3 or mv2
x

V .
This is the contribution to the pressure of a sin-
gle molecule bouncing back and forth. For a gas

of N molecules it is Nmv2
x

V . We can also take into
account that the velocities are not all the same,
and use the average of mv2

x, which we write as

mv2
x, so that P = Nmv2

x
V , which can be rewritten

as PV = Nmv2
x.

This is really the end of the derivation. But
we can also look at what happens if the molecules
do not just move along the x direction. In that
case there are the additional velocity components
vy and vz. The velocity v is related to them
by v2 = v2

x + v2
y + v2

z . With a large number of
molecules, randomly moving in all possible direc-
tions, all components will be equally represented,
and their averages v2

x, v2
y , and v2

z will be equal.

v2 is then equal to 3v2
x. This allows us to rewrite

our result as PV = 1
3 Nmv2, which we can also

write as PV =
(

2
3 N

) (
1
2 mv2

)
.

We have achieved our goal. We now have
a relation between the macroscopic variables, P
and V , quantities that apply to the whole con-
tainer with the gas in it, on the left, and the micro-
scopic variables that refer to the molecules, i.e.,
their number and their average kinetic energy, on
the right.

EXAMPLE 1

Joe and Jane are practicing tennis by hitting balls
against a wall. The mass of a ball is 0.15 kg. The
speed of each ball as it hits the wall is 20 m/s. There
are 40 hits in one minute. Assume that the balls hit
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the wall at right angles and do not lose any kinetic
energy when they bounce back.

(a) What average force does the wall experience in
one minute?

(b) What is the average pressure on the section of
the wall, whose area is 3 m2, where the balls
hit?

Ans.:
(a) mvx = 3 kg m/s.
At one hit of a ball the momentum changes from

mvx to −mvx. This is a change of 2mvx = 6 kg m/s.
For 40 hits it is 240 kg m/s.

In a time of 60 s this is a rate of 240 kg m / s
60 s = F =

4 kg m/s2, or 4 N.

(b) The pressure is F
A = 4

3 = 1.33 N/m2.

EXAMPLE 2

At atmospheric pressure (1.01 × 105 N/m2) and room
temperature the number of molecules in 1 m3 of air
is about 2.7 × 1025. The average mass of an air
molecule is about 5 × 10−26 kg. What is the average
kinetic energy of a molecule?

Ans.:
PV = ( 2

3 N)( 1
2 mv2)

P = 1.01 × 105, V = 1 m3, N = 2.7 × 1025

1
2 mv2 = 1.5 PV/N = 5.6 × 10−21 J

Atomic and molecular energies are most often
expressed in electron volts (eV) where 1 eV = 1.6 ×
10−19 J. Here the energy is .035 eV.

We can find the corresponding speed:
√

v2 =√
2K
m =

√
(2)(5.6×10−21)

5×10−26 =
√

2.24 × 105 = 473 m/s.
This is the square root of the average of the

square of the speed. It is called the root mean square
speed, vrms.

You might think that it would be simpler just
to say “average.” But since all directions are equally
represented, the average velocity is zero! (For two
velocities of 10 m/s in opposite directions, the average

velocity is zero, but vrms is
√

1
2 (100 + 100) = 10 m/s.)

The macroscopic point of view

A number of pioneering scientists in the seven-
teenth and eighteenth centuries performed exper-
iments on gases at different pressures and temper-
atures and with different volumes. Their results
can be summarized by the relation that came to

be known as the ideal gas law, PV = nRT. Here
P is the pressure, V the volume, T the abso-
lute temperature (measured in kelvins), and n
is the amount of gas measured in moles. R is
a proportionality constant, called the universal
gas constant. In this section we review the work
that led to the ideal gas law and examine the
quantities P, T, and n.

Pressure

Water in a glass exerts a force on the bottom of
the glass equal to the water’s weight, Mg. This is
in addition to the weight of the air and the result-
ing atmospheric pressure. We can express the
force of the water in terms of the height, h, and
the density, ρ (Greek rho) of the water. The den-
sity is the mass per unit volume, and the volume is
the height times the cross-sectional area. ρ = M

V
and V = hA, so that Mg = ρhAg. The pressure
on the bottom is Mg

A , which is equal to ρgh. The SI
unit of pressure is N/m2, which is also called the
pascal, Pa, after Blaise Pascal (1623–1662), who,
among other contributions, suggested correctly
that atmospheric pressure should be smaller on
top of a mountain. (1000 Pa = 1 kPa.)

The pressure, ρgh, is not only there at the
bottom of a column of fluid. It is the pressure
at the depth h regardless of the direction. If this
were not so, a drop of water at that depth would
not be in equilibrium, would experience a net
force, and would accelerate.

EXAMPLE 3

Δh

A A

P1 P2

The figure shows a U-tube partly filled with mercury.
(Mercury, because it is a very dense liquid, with a
density 13.6 times that of water.) The tube is open
on the right side and closed on the left side. On the
left side the mercury column is higher by Δh = 10 cm.
What is the difference in pressure between the top of
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the mercury column on the left and the top of the
mercury column on the right?

Ans.:
At the level marked A the pressures on the two sides
are the same. Call the pressure above the mercury
on the right side P2 and on the left side P1. P2 is
equal to P1 plus the pressure of a column of mercury
10 cm high, P2 = P1 + ρgΔh, where ρ is the den-
sity of mercury, 13.6 × 103 kg/m3, and Δh = 0.1 m.
The difference between P2 and P1 is ρgΔh = (13.6 ×
103)(9.8)(0.10) = 1.33 × 104 Pa.

EXAMPLE 4

What is the pressure on the bottom of a glass of
water?

Ans.:

P
A

P
AP

A

P
A

P

The pressure on the top of the water is the
atmospheric pressure PA. On the bottom there is
the additional pressure ρgh, where h is the height
of the water. The total pressure on the bottom is
P = PA + ρgh.

Atmospheric pressure also acts on the outside of
the glass of water. It acts everywhere, including on the
bottom of a glass sitting on a table. (There is some air
between the glass and the table unless special efforts
are made to exclude it.)

All of us live at the bottom of an ocean, not
of liquid, but of air. The atmosphere is held to
the earth by its weight. We are so used to the
pressure that it exerts that we are normally not
aware of it.

The first to understand the existence of
atmospheric pressure and to measure it was
Evangelista Torricelli (1608–1647). In 1643 he
performed the following experiment. He took a
glass tube closed at one end, with a length of

76 cm

about 1 m, and filled it with mercury. He put
his finger over the open end, turned it upside
down, and submerged the open end in a pool
of mercury. Some of the mercury ran out of the
tube into the pool, until the difference in height
between the surface in the tube and the surface
of the pool was about 0.76 m.

The pressure on the surface of the mercury
pool (outside the U-tube) is just the atmospheric
pressure. Inside the U-tube, above the mercury,
there is no air and no atmospheric pressure.
Inside the same tube, at the level of the mercury
surface outside the tube, there is only the pressure
of the mercury column.

In effect Torricelli produced a U-tube with
the pressure of the column of mercury on one
side and atmospheric pressure on the other. The
two pressures are equal, so that what he showed
is that the pressure of the air in the atmosphere is
the same as that of a column of mercury whose
height is 0.76 m.

It was known at that time that a suction
pump can lift water only to a height of about
10.3 m. Torricelli’s experiment showed why this
is so. The situation is just as in his experiment,
but with water instead of mercury. The pump
removes the air (and its pressure) above the
water. The atmospheric pressure forces water up.

Pump

10.34 m
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With no pressure above the water, the pressure
of the water column is equal to atmospheric
pressure. Since the density of mercury is 13.6
times as great as that of water, the water col-
umn is 13.6 times as high as the mercury column.
(13.6 × 0.76 m = 10.34 m.)

EXAMPLE 5

How large is atmospheric pressure in pascals when it
is said to be “760 mm”? (The height of a column of
mercury, here 760 mm, is often used as a measure of
the pressure at its base.)

Ans.:
The density of mercury is 13.6 × 103 kg/m3. At the
bottom of a column of mercury whose height is
760 mm or 0.76 m the pressure is ρgh = (13.6 ×
103)(9.8)(0.76) = 1.01 × 105 Pa or 101 kPa.

Atmospheric pressure at the surface of the earth
varies, but is generally close to 101 kPa or 760 mm of
mercury.

Archimedes’ principle

h1h2

P
1

P
2

At the depth h1 the pressure is atmospheric
pressure (pA) plus ρgh1. At the depth h2 it is
greater and equal to pA + ρgh2. A disk with
cross-sectional area A experiences the pressure
P1 downward at its top surface and the pressure
P2 upward at its bottom surface. There is a

net pressure upward, P2 − P1, equal to ρgh2 −
ρgh1 = ρg(h2 − h1) and hence a net upward force
A times as large, equal to ρg(h2 − h1)A. This
force is called the buoyant force.

The volume of the disk is (h2 − h1)A. ρ is
the density of the liquid, so that ρg(h2 − h1)A
is the weight of the liquid that is displaced by the
disk. That the magnitude of the buoyant force is
equal to that of the weight of the displaced liquid
is called Archimedes’ principle.

EXAMPLE 6

A block of wood whose height is 10 cm, and whose
density is 900 kg/m3 floats in water. How much of
the block is under water?

Ans.:
The block sinks until its weight is equal to the buoy-
ant force. The net force on the block is then zero,
and the block is in equilibrium. The block’s weight
is Mg = ρwoodAhg, where h = 10 cm. Since ρwater =
1000 kg/m3 it is also .9ρwaterAhg.

h l

If the wooden block is submerged to a distance
�, the buoyant force is ρwaterA�g. For it to be equal to
the weight of the wooden block, � = 0.9h, and 9 cm
of the block is submerged. The ratio �

h is equal to the
ratio of the densities ρwood

ρwater
.

Bernoulli’s equation

So far we have considered only liquids at rest. We
now look briefly at pressure in a flowing liquid.

x1

F1

A1

A2

F2

x2

The figure shows a liquid in a tube whose
cross-sectional area changes from A1 to A2. Look
at the part of the liquid that is shaded. It starts
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on the left, where the area is A1. It is pushed
to the right with a force F1 = P1A1. Later the
same volume is at the right where the area is A2.
The force in the opposite direction is F2 = P2A2.
As this amount of liquid moves to the right the
distance through which it moves is different in
the wide part and in the narrow part. It moves
forward by Δx1 in the wide part and by Δx2 in
the narrow part. The volumes A1Δx1 and A2Δx2

are the same.
The work done on this amount of liquid is

F1Δx1 − F2Δx2, which is equal to P1A1Δx1 −
P2A2Δx2. This amount of work is equal to the
gain in kinetic energy, 1

2 mv2
2 − 1

2 mv2
1, where m

is the mass of the liquid whose volume is A1Δx1

(or A2Δx2).
Since the density is equal to the mass

divided by the volume, ρ = m
V , we can write

m = ρV = ρA1Δx1 (or ρA2Δx2), so that the
change in kinetic energy is ( 1

2 )(ρA2Δx2)(v2
2) −

( 1
2 )(ρA1Δx1)(v2

1). This is equal to P1A1Δx1 −
P2A2Δx2.

The volume A1Δx1 (or A2Δx2) appears in
each term and we can divide by it to get P1 − P2 =
1
2ρv2

2 − 1
2ρv2

1 or P1 + ρv2
1 = P2 + ρv2

2.
This relation, based on the law of con-

servation of energy, is called Bernoulli’s equa-
tion, after Daniel Bernoulli (1700–1782). We
see that in the wide part, where the speed of
the flowing liquid is smaller, the pressure is
larger. This is an important insight, with many
applications.

There are, however, some major limitations.
Bernoulli’s equation assumes that the liquid flows
smoothly, every part of it in the same direction.
This is called laminar flow, in contrast to the
much more common turbulent flow, where the
motion is more complicated. The equation also
ignores any loss of energy from frictional effects
that result from the viscosity (the “stickiness”) of
the liquid.

With these limitations you may question the
usefulness of the equation. But although its exact
quantitative application is limited to special situ-
ations, Bernoulli’s principle, namely the decrease
in pressure where the liquid flows faster, is of
great importance.

EXAMPLE 7

In a hurricane the wind blows horizontally across
the 300 m2 roof of a house with a speed of 30 m/s

(67 mph). What is the resulting lifting force on the
roof?

Ans.:
We are looking for the pressure difference that results
from the change in speed of the air, from zero
to 30 m/s. The density of air is 1.29 kg/m3. ΔP =
1
2 ρv2 = (0.5)(1.29)(302) = 581 Pa. P = F

A . F = (581)
(300) = 1.74 × 105 N, which is equivalent to the
weight of 1.77 × 104 kg, or about 18 metric tons.
(1 metric ton is 1000 kg.)

We came to Bernoulli’s equation by using the
fact that the work done on the liquid is equal to
the increase in its kinetic energy, and then divid-
ing each term by the volume. We can also include
the potential energy. Since we are using the sym-
bol P for pressure in this section, we will use P
for potential energy.

We can use the system consisting of the
fluid and the earth, with its kinetic and poten-
tial energies, and external work done on it:
K1 + P1 + W = K2 + P2, where the subscripts
1 and 2 indicate two different positions in the
fluid. As before, we divide each term by the vol-
ume, so that 1

2 mv2 becomes 1
2ρv2, and the work

done on the liquid becomes P1 − P2. Similarly
the difference in the potential energies, Mgy1 −
Mgy2, becomes ρgy1 − ρgy2. The expanded
Bernoulli equation is then 1

2ρv2
1 + ρgy1 + P1 =

1
2ρv2

2 + ρgy2 + P2.

EXAMPLE 8

pump
reservoir

A pump is 1.2 m below the surface of a reservoir. It
provides the difference in pressure for a fountain 3 m
above the surface of the reservoir, from which water
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shoots out with a speed of 2 m/s. What is the pressure
difference that must be supplied by the pump?

Ans.:
Assume that v1, the velocity at the intake to the
pump, is zero. Take the reference level to be at
y1, i.e., y1 = 0. Bernoulli’s equation then reduces to
P1 − P2 = 1

2 ρv2
2 + ρgy2.

The density of water is 103 kg/m3, so that P1 −
P2 = ( 1

2 )(103)(22) + (103)(9.8)(4.2) = 43.2 × 103 Pa.

Absolute temperature

After Torricelli’s work a number of other discov-
eries were made in the seventeenth and eighteenth
centuries in the study of gases. One is that the
product of the pressure and the volume of a
given amount of gas is constant if the temperature
remains constant. This relation is usually called
Boyle’s law, after Robert Boyle (1627–1691).
It is an empirical law. Like the other relations
between pressure, volume, and temperature that
we discuss next, it is approximate and subject to
various limitations.

Another discovery was that at a given pres-
sure the volume and the temperature are linearly
related, in other words, the graph of volume
against temperature is then a straight line. The
graph of pressure against temperature is also a
straight line. A particularly significant feature of
this relation can be seen in the figure.

0 t(oc)–273

P

The straight lines of pressure against tem-
perature are different for different volumes, but
when they are extrapolated to lower pressures
they converge at the point where the pressure is
zero. At this point the temperature is −273◦C.
Since no lower pressure is possible, this is also
the lowest possible temperature. It is called
the absolute zero of temperature. Temperatures
measured from absolute zero are called absolute
temperatures, and the symbol T is used for them.
(t is used for other temperature scales, such as the
Celsius scale. On this scale 0◦C is the temperature

of melting ice and 100◦C is the temperature of
boiling water.) T (in K) = t (in ◦C) + 273.

The scale that starts at the absolute zero of
temperature, and whose units are the same as
for the Celsius scale, is called the Kelvin scale
(after William Thomson, Lord Kelvin, 1824–
1907). Its unit is called the kelvin (K). If T is
the temperature on the Kelvin scale and t is the
temperature on the Celsius scale, T = t + 273.
On the Kelvin scale volume and temperature are
proportional.

The two relations for pressure, volume, and
temperature can be combined to say that PV

T
is constant for a given amount of gas. If we
compare the pressure, volume, and absolute
temperature at two different times, i.e., in two
different states of a certain amount of gas, we
can write P1V1

T1
= P2V2

T2
. Another way to write

the same relation is that the product PV is pro-
portional to T (PV ∝ T), i.e., it is equal to a
proportionality constant times T.

EXAMPLE 9

By what fraction does the pressure in a tire increase
when the temperature goes from 20◦C to 30◦C?

Ans.:
Assume that the volume remains constant. The abso-
lute temperature goes from 273 + 20K or 293K to
273 + 30K or 303K. The ratio is 303

293 = 1.034. The
tire pressure increases by .034 of 3.4%.

So far we have considered a definite quantity
or mass of gas. We can now incorporate the mass
in our relation. If P and T are held constant, what
can we say about V? For a given amount of gas
it is constant, but what if the amount changes?
Then the volume is proportional to the mass.

Experiments show that if the mass is mea-
sured in moles the relation between P, V , T and
the mass is universal, i.e., independent of the kind
of gas.

What Is a Mole?

In Chapter 1, we talked briefly about atomic
weight. In the meantime we have also talked about
mass, and you will not be surprised that we pre-
fer talking about atomic mass rather than atomic
weight. After all, your weight depends on where
you are and is different at the top of a moun-
tain from what it is at the bottom. And it is quite
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different on the moon. The mass remains the
same, no matter where you are.

At first only relative masses were known, and
one unit was assigned to hydrogen, which led to
about four for helium, about 12 for carbon, and
so on. Eventually it was realized that these num-
bers corresponded approximately to the number
of particles in the nuclei of the various atoms.

To get exact numbers a standard was adopted,
namely exactly 12 units (now called “atomic mass
units,” with the symbol u) for the most abundant
kind of carbon, which is called “carbon 12” (12C).
It is the kind, or isotope, with six protons and six
neutrons in its nucleus. It was then possible to
assign atomic masses (in atomic mass units) to
each element on the basis of measurements.

The quantity 12 grams of carbon 12 is called a
mole of 12C. (12 kg is a kilogram-mole.)The number
of atoms in a mole is called Avogadro’s number,
given by the symbol NA. A mole of hydrogen
atoms consists of NA atoms. A mole of hydrogen
molecules consists of NA molecules. Experiments
show that NA is 6.023 × 1023 molecules/mole or
6.023 × 1026 molecules/kg-mole.

If we measure the mass of gas by the number
of moles, n, we can write the relation between P,
V, T and the mass as PV = nRT, where R is the
proportionality constant. Its value is determined
from experiments and is about 8.31 J/mol K, but
remember that the number depends on the units
that are used.

The relation PV = nRT summarizes the
results of many experiments. This single state-
ment describes how the macroscopic quantities
P, V , T, and n are related, regardless of which
kind of gas is being measured. It is therefore
sometimes called the universal gas law. More
often it is called the ideal gas law to empha-
size that real gases follow it only approximately,
as an “ideal” to be approached under special
circumstances.

PV = nRT is an empirical law, i.e., it is
based on experiment. It represents a model.
Real gases follow it more closely as the den-
sity decreases i.e., when the molecules are far
apart and so have little interaction with each
other.

EXAMPLE 10

What is the volume of 1 mole of gas at atmospheric
pressure and 0◦C?

Ans.:
V = nRT

P = (1)(8.31)(273)
1.01×105 = 0.0225 m3 or 22.5 liters.

We have to be careful with the units. We have
not been sticking to SI units, since we have defined
the mole as the number of molecules in 12 g of
12C. R is then 8.31 J/mol K. If we were to use SI
units consistently we would have to use the kg-mole,
which is 103 as large. R is then also 103 as large,
and equal to 8.31 × 103 J/kg-mol K. The volume of
1 kg-mole at the same pressure and temperature is
(1)(8.31×103)(273)

1.01×105 = 22.5 m3.

The surprising bridge
to temperature

The number of molecules in one mole is Avo-
gadro’s number, NA. The number of molecules
in n moles, N, is therefore nNA, so that
PV = N

NA
RT. The constant R

NA
is called Boltz-

mann’s constant, k, so that PV = NkT. (k =
8.31

6.023×1023 = 1.38 × 10−23 J
molecule−K .)

We now have two relations for the same
quantity, PV , on the left-hand side. One is for
the microscopic model of molecules flying freely
except when they bounce into each other or off

the walls. It is PV =
(

2
3 N

) (
1
2 mv2

)
. The other

is for the approximate observed macroscopic
behavior PV = nRT or PV = NkT.

If both are to describe the same situation, the
right-hand sides of the two relations must be the

same, i.e.,
(

2
3 N

) (
1
2 mv2

)
= NkT or

1
2

mv2 = 3
2

kT.

This is one of those very special relations that
provide a link between two different realms. We
have here two different ways of looking at the
same set of phenomena using two quite different
languages. On the left-hand side is the average
kinetic energy of a molecule. It provides a look at
the microscopic constituents. On the right-hand
side is the temperature. It is a macroscopic quan-
tity, which characterizes the whole container
of gas.

We see that the quantity that we observe on
the macroscopic level as temperature is a mani-
festation of the motion, on the microscopic level,
of the molecules: the average kinetic energy of a
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molecule in a gas is proportional to the abso-
lute temperature. Moreover, this is so regard-
less of what kind of molecules we are talking
about.

We first defined the ideal gas as a theoretical
microscopic model with small, rigid molecules
that have only kinetic energy. Then we used the
relation PV = nRT to describe the approximate
experimental behavior of real gases. It is the con-
fluence of the two approaches, the assumption
that both describe the same system, that leads to

the result 1
2 mv2 = 3

2 kT.
This relation is only for the ideal gas of

particles whose internal structure plays no role.
But the conclusion that temperature is a mani-
festation of energy on the microscopic scale turns
out to be universally valid, and is one of the great
insights of science.

EXAMPLE 11

What are the average energy and the root-mean-
square speed, vrms, of oxygen molecules at a room
temperature of 300 K(=27◦C)?

Ans.:
It is important to stay with SI units for all of the
calculations. Only if you use a consistent system of
units (such as the SI system) do you know that the
answer will also come out in the same system of units.
(Remember that “constants” may have units also.)
You may occasionally want to use other units, such
as grams, moles, or electron volts, but the units on
the two sides of an equation need to be the same.
If there is any doubt it is best to include units in
every term.

The energy is 3
2 kT = (1.5)(1.38 × 10−23)(300) =

6.21 × 10−21 J.
We can express the energy in electron volts

(eV), where 1 eV = 1.6 × 10−19 J. We can convert the
energy from joules to electron volts by multiplying by

1 eV
1.6×10−19J

to get 0.039 eV.

The energy is kinetic energy, 1
2 mv2, so that

v2 = 2EK
m .

One mole of oxygen molecules has 6.023 ×
1023 molecules and a mass of 32 g. The mass
of one molecule is therefore 32

6.023×1023 g = 5.31 ×
10−23 g = 5.31 × 10−26 kg.

Vrms

√
v2 =

√
(2)(6.21×10−21)

5.31×10−26 =
√

2.34 × 105 =
484 m/s. Note that this is quite a high speed, larger
than the speed of sound.

Internal energy and heat capacity

The only energy of a molecule of an ideal gas is its
kinetic energy. For an amount of gas consisting

of N molecules the energy is (N)
( 1

2 mv2
)
, which

we now see to be equal to 3
2 nRT. This is the inter-

nal energy of the gas, which we have previously
called U.

Can we observe and measure the internal
energy? We can measure how much energy it
takes to change it, as, for example, by heating.
The amount of added energy for each unit of
temperature change is called the heat capacity,
C. The heat capacity per unit mass is called the
specific heat capacity, c.

We can see what the heat capacity is for our
model. If we increase the internal energy U to
U+ΔU, the temperature will increase to T+ΔT,
and U+ΔU= 3

2 nR(T+ΔT). We can subtract U
from the left side and the equal quantity 3

2 nRT
from the right side, to leave ΔU = 3

2 nRΔT. We
see that the heat capacity, i.e., the amount of
energy to change ΔT by one kelvin, is 3

2 nR.
For the ideal gas model the heat capacity

is 3
2 nR. We can say that the model predicts

a heat capacity of 3
2 nR. This is a remarkable

result. It says that the specific heat capacity per
mole of an ideal gas (its molar heat capacity)
is 3

2 R
( = 12.5 J

mol K

)
, no matter what the gas

is. Here are the experimentally observed molar
heat capacities per mole for some gases. (These
are the “noble” gases. Because of their complete
electron shells they interact with each other only
extremely weakly, and do not form molecules.)

Gas C (J/mol K)

He 12.5

Ne 12.5

Ar 12.5

Kr 12.3

We see that the measured quantities are close
to each other and to 3

2 R for each of the gases. This
is a major triumph for the model.

You notice that the list of gases does not
include the common ones, oxygen, nitrogen, and
hydrogen. The reason is that for these gases each
molecule consists of two atoms. Each of these
molecules has both kinetic and potential energy,
and our model, which treats each as a particle, is
inadequate.
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EXAMPLE 12

6 J of energy is transferred by heating 1 g of neon
(atomic mass 22.5 g/mol). What is the rise in temper-
ature?

Ans.:
Q = ΔU

ΔU = 3
2 nRΔT

Q = CΔT, where C = 3
2 nR

n = 1
22.5

C = 3
2

1
22.5 (8.31) = 0.554 J/K

ΔT = Q
C = 6

0.554 = 10.8 K

EXAMPLE 13

0.1 kg of water at 80◦C is mixed with 0.2 kg of water
at 20◦C. What is the final temperature?

Ans.:
Call the final temperature t. (Here there is no need
to use absolute temperature, T. We use ◦C and the
symbol t.) The 0.1 kg of water changes from 80◦C
to t, and gives up an amount of energy of mcΔt =
(0.1)(c)(80 − t). This amount of energy goes to the
0.2 kg of water, which gains 0.2(c)(t − 20). Since the
two amounts of energy are the same, (0.1)(c)(80 −
t) = (0.2)(c)(t − 20), which leads to t = 40◦C.

Heating

Let’s look more closely at what happens when
we increase the internal energy by heating. We’ll
talk about ideal gases, but the process is simi-
lar in all materials. We start with a container of
gas at some temperature T and internal energy
3
2 nRT. We take a second container of gas, at a
higher temperature, and bring the two gases into
contact.

From the macroscopic point of view energy
“flows” from the hotter to the cooler gas. The
microscopic point of view helps us to understand
how this happens. The molecules of the hotter
gas move, on average, with greater speeds. When
they collide with the molecules of the cooler
gas they transfer some of their kinetic energy
to them. The internal energy of the hotter gas
decreases and it becomes cooler, and the internal
energy of the cooler gas increases and it becomes
hotter, until their temperatures are the same.
There is then no further net transfer of energy,
and the two gases are in thermal equilibrium.

Note that we use the words heat and heating
only for the transfer of energy. (The gas does not
have heat energy.) The transfer of energy changes
the internal energy, which in an ideal gas is the
kinetic energy of the molecules.

Work

A second way in which the internal energy can
be changed is by doing work. (We will again talk
about an ideal gas, but the considerations are
similar for other materials.) We know that work
is done on an object when a force acts on it and it
moves. We can do work on a gas by compressing
it with a piston that moves in a cylinder. If the
force, F, is applied with a piston, and the piston
moves a distance s, the work done on the gas is Fs.
We can write this as ( F

A )(sA), where A is the cross-
sectional area of the cylinder. F

A is the pressure
(P) applied to the gas and sA is the change in the
volume (ΔV) of the gas in the cylinder. The work
done on the gas can therefore be written as PΔV .

F

S

A

We can describe the process on a graph of
P against V (a PV diagram.) In the figure the
pressure is constant and the volume changes from
V1 to V2. The magnitude of the work done on the
gas is equal to that of the rectangle PΔV under
the curve. If the pressure is not constant, the work
is still equal to the area under the curve.
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P

V1V2

V

EXAMPLE 14

An ideal gas is compressed to 1
3 of its initial volume

by a piston in a cylinder.

(a) What is the change in the pressure if the temper-
ature does not change?

(b) What is the change in the temperature if the
pressure does not change?

(c) What is the change in the temperature if at the
same time the pressure increases by a factor of 4?

Ans.:
(a) PV = nRT. If T does not change, PV remains

constant, and P1V1 = P2V2, or V2
V1

= P1
P2

. Since
V2
V1

= 1
3 , P1

P2
= 1

3 and P2 = 3P1. The pressure
increases by a factor of 3.

(b) Since P, n, and R are constant, V ∝ T, and both
the volume and the absolute temperature change
by the same factor.

(c) PV = nRT. Since n and R are constant, PV
T is

constant, and P1V1
T1

= P2V2
T2

. V2
V1

= 1
3 , P2

P1
= 4,

so that T2
T1

= ( P2
P1

)( V2
V1

) = 4
3 .

The first law of thermodynamics

Both heating and doing work on a gas are pro-
cesses that increase the internal energy of the gas.
The initial internal energy of the gas (U1), plus
the energy transferred to it by heating it (Q) and
doing work on it (W), is equal to its final internal
energy (U2). In this form and context the law of
conservation of energy is called the first law of
thermodynamics: U1 + Q + W = U2.

EXAMPLE 15

The pressure on a container with 18 moles of an ideal
gas increases from 1 atmosphere to 2.5 atmospheres
while the volume decreases from 0.4 m3 to 0.2 m3

along a straight line on a PV diagram.

(a) Draw a PV diagram.

(b) How much work is done on the gas?

(c) What are the initial and final temperatures?

(d) What are the initial and final internal energies?

(e) How much heat is transferred to the gas during
this process?

Ans.:
(a)

0 0.2 0.4

V (m3)

P
(atm.)

0

1

2

3

(b) Area under the line on the diagram: (1)(.2) +
( 1

2 )(.2)(1.5) = .35. This is in (atmospheres)(m3)
and has to be changed to SI units. 1 atmosphere
= 105 Pa. The area in joules is therefore .35 ×
105 J. This is the work done on the gas.

(c) T1 = P1V1
nR = (105)(0.4)

(18)(8.31) = 267 K or −6◦C.

T2 = (2.5×105)(0.2)
(18)(8.31) = 334 K or 61◦C.

(d) U1 = nRT1 = 4 × 104 J.
U2 = nRT2 = 5 × 104 J.

(e) U1 + W + Q = U2.
Q = 5 × 104 − 4 × 104 − 3.5 × 104 = −2.5 ×

104 = −2.5 × 104 J.
2.5 × 104 J is transferred out of the gas.

Go to the PhET website (http://phet.colorado.edu)
and open the simulation Gas Properties.

Explore the relationship between volume,
pressure, and temperature, and the effect of work
done or heat applied to a system.

7.2 Other systems: adding
pieces from reality

The ideal-gas model assumes that the con-
stituents have no internal structure and no forces
between them except on contact. In this section
we explore some other systems and the models
that help us to understand their properties and
behavior.
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In contrast to what we have done so far, we
will need to consider forces,within the molecules
as well as those between them. These forces are
electric forces, following Coulomb’s law.

The gravitational forces are still there, but
they are smaller by a huge factor, so that we can
neglect them. The nuclear forces act only over
distances much smaller than the size of atoms
and play their role almost completely within the
nuclei. On the other hand, in each atom the elec-
trons are held to the nuclei by electric forces. The
forces between atoms in molecules and solids,
and those between molecules, are also entirely
electric.

EXAMPLE 16

In a hydrogen atom the average distance between
the proton and the electron is 0.53 × 10−10 m. The
mass of the proton is 1.67 × 10−27 kg and the mass
of the electron is 0.91 × 10−30 kg. The charge on each
is ±1.6 × 10−19 C.

(a) What is the magnitude of the gravitational inter-
action between the two particles?

(b) What is the magnitude of the electric interaction
between them?

(c) What is the ratio of the electric force to the
gravitational force that they exert on each other?

Ans.:
(a) Fg =G M1M2

r2 =1.67×10−11 (1.67×10−27)(0.91×10−30)
(0.53×10−10)2

= 9.04 ×10−48 N.

(b) Fe = K Q1Q2
r2 = 9 × 109 (1.6×10−19)2

(0.53×10−10)2
=

8.5 × 10−8 N.

(c) Fe
Fg

= 0.9 × 1040.

We will, for the time being, not consider
what happens inside the nuclei. They have inter-
nal structure and internal energy, but their energy
levels are separated by energies of the order of
105 times as large as those of atoms. The amount
of energy that is required to change their energy is
so large that we are justified in continuing to con-
sider each nucleus to be a structureless particle.

Molecules

In molecules the interatomic electrical forces hold
two or more atoms, the same kind or different, to

each other. The molecules have internal motions
of vibration and rotation, and as a result have
additional kinetic and potential energies.

Diatomic molecules, such as those of hydro-
gen, nitrogen, and oxygen, consist of two atoms.
They can be very successfully described by a
model in which the force between the two atoms
is represented by a spring. In this model the two
atoms vibrate along the line that joins them.

v v

v=0 v=0

v

v v

v

v=0 v=0

Let’s look at the vibrating motion in more
detail. We’ll assume that the spring follows
Hooke’s law, F = −kx. The vibrational motion
of an object connected to a spring that follows
Hooke’s law is called simple harmonic motion.
As each atom goes back and forth, its energy
changes from kinetic to potential and back. At
the two ends of the motion the atoms are stopped
and all of the energy is stored in the spring as
potential energy. In between, in the middle, no
energy is stored in the spring and all of the energy
is kinetic. On average, as the atoms vibrates,
it turns out that there is just as much kinetic
energy as potential energy. The diagram shows
the model of a diatomic molecule in five different
positions of its vibration.

Vibration is not the only possible motion.
The molecules can also rotate about an axis
perpendicular to the line that joins them. The
diagram shows the model in three different posi-
tions as it rotates about an axis at right angles to
the paper. In addition, it can rotate about a sec-
ond axis that is also perpendicular to the line that
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joins the atoms, but lies in the plane of the paper.
In this rotation one of the atoms starts by coming
out of the paper, while the other one moves into
the paper. (There is a third axis, joining the two
atoms, but rotation around it contributes so little
to the internal energy that we can neglect it.)

Just as for monatomic gases, we can find out
about the internal energy of the gas by measuring
the heat capacity. If we heat a monatomic gas, all
the energy that we transfer to it becomes kinetic
energy of the motion of the individual atoms. For
the diatomic gas some of it becomes energy inter-
nal to the molecules, namely energy of vibration
and energy of rotation. Because any added energy
is divided between these various kinds of motion
and their kinetic and potential energies, it now
takes more energy to raise the temperature, and
so the heat capacity is larger.

If we know how the energy is divided we
can calculate the heat capacity. It turns out that
at sufficiently high temperatures each part of
the internal energy takes up an equal amount
of energy. The vibrational energy has two such
parts, the elastic potential energy of the spring
and the kinetic energy, back and forth, of the
vibrating motion. The rotational energy has to be
counted as two parts, because the molecule can
rotate about two different axes at right angles
to each other, both of them perpendicular to the
line joining the two atoms. (There is no potential
energy associated with the rotational motion.)
For the translational energy of the molecule as a
whole we also have to count more than one part,

because there are three different perpendicular
directions, x, y, and z.

What we have called “parts of the energy”
are called degrees of freedom. The rule that the
energy is divided equally among them is called
the principle of equipartition of energy. It holds
as long as each kind of motion, i.e., each of the
degrees of freedom, is equally accessible.

The energies are not all equally accessible
when the energy is quantized, i.e., when only
certain values of the energy are allowed. The
energies between the allowed energy levels are
then “forbidden” and are not accessible. At high
temperatures the allowed energies are very close
to each other, so that the forbidden energies do
not play a determining role. The principle of
equipartition therefore holds most closely at high
temperatures. It fails at temperatures that are so
low that the spacing between the allowed ener-
gies is of a size comparable to the thermal energy,
ie., to about kT.

EXAMPLE 17

What is the internal energy of a mole of an ideal
diatomic gas under the assumption that the principle
of equipartition holds?

Ans.:
The internal energy of a diatomic molecule is 1

2 kT
for each degree of freedom (if the temperature is suf-
ficiently high that the quantization of energy has no
measurable effect). For one mole the internal energy
is NA times as large, or 1

2 RT. At room tempera-
ture (about 300 K), 1

2 RT = (.5)(8.31)(300) = 1.25 ×
103 J/mol for each degree of freedom.

There are three degrees of freedom for the trans-
lational (linear) motion, two degrees of freedom for
the vibrational motion, and two more degrees of free-
dom for the rotational motion, for a total of seven.
The internal energy is 8.73 × 103 J/mol.

Phase changes

In a gas the molecules fly around freely. If
the temperature goes down, the molecules slow
down. In the ideal gas, where PV = nRT, the
molecules can slow down until they don’t move
at all when the absolute temperature reaches
zero. A real gas behaves differently. At some
temperature it condenses and becomes a liquid.
At some still lower temperature it freezes and
becomes a solid.
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When water freezes to become ice, boils to
become steam, or evaporates to become water
vapor, its molecules don’t change. Ice, water, and
steam are different phases of the same material.

The phases have different properties. Most
obviously, their densities are very different. In
the gas phase the molecules are far apart. In the
liquid phase they are close to each other, but are
still able to move. In the solid phase each atom
or molecule has a fixed place about which it can
vibrate.

We know that a phase change takes place
at a fixed temperature. Water freezes and ice
melts at 0◦C. Water boils and steam condenses
at 100◦C. At each phase change the internal
energy changes by a definite amount. When ice
changes to water its internal energy increases by
80 × 103 cal/kg, or 333.5 kJ/kg, and this amount
of energy, called the heat of fusion, needs to
be supplied to it. When it boils, water requires
the heat of vaporization of 540 × 103 cal/kg or
2.257 × 103 kJ/kg.

When a solid is heated, its temperature rises
until it begins to melt. Further heat causes more
and more of it to melt while the temperature
remains the same. When all of it has melted
the temperature rises again, until it reaches the
boiling point. The phase change from liquid to
gas then continues until all of the material has
changed to the gas phase.

a

b c

d e

0

100
t (oC)

time

Here is a schematic graph to show the pro-
gression of the phases of water when it is heated
at a steady rate, starting with ice. From a to b it is
in the solid phase (ice), and warms until the melt-
ing point is reached at 0◦C. The temperature then
remains constant until all of the ice has melted at
point c. The liquid water now warms to the boil-
ing point, 100◦C, point d. The temperature again
remains constant, this time at 100◦C, until all of
the water has turned to steam at point e. With

continued heating the temperature of the steam
then continues to rise.

EXAMPLE 18

How much energy needs to be transferred to 0.2 kg
of ice at −10◦C to raise its temperature so that it is
water at +10◦C?

Ans.:
We will need to know the specific heat capacity of
water, which is cw = 103 cal

kg K or 4.18 × 103 J/kg K,
and the specific heat capacity of ice, which is
ci = 2.09 × 103 J/kg K. If the heat of fusion hiw is
equal to 333.5 × 103 J/kg then the required energy
is 10mci + mhiw + 10mcw = (0.2)(10)(2.09 × 103) +
(0.2)(333.5 × 103) + (0.2)(10)(4180) = 4.18 × 103 +
66.7 × 103 + 8.36 × 103 = 75.1 × 103 J.

What happens from the microscopic point
of view? What does our gas model of fly-
ing molecules suggest? As the temperature goes
down and the molecules slow down, they spend
more time near each other. The forces between
them then have a greater chance to affect their
motion. Eventually the disruptive effect of the
ceaseless motion decreases sufficiently for the
forces to bring about the phase transition from
gas to liquid.

In the liquid phase the atoms or molecules
continue to move, but their motion is much more
confined. At the freezing (or melting) temper-
ature there is again a phase transition as they
become locked into place. The motion contin-
ues, but it is now a vibration around a fixed
position.

In each of the phases or states of a mate-
rial, the atoms or molecules are in motion, but
not all with the same energy. There is a range or
distribution of energies. In the liquid state, for
example, some of the molecules move so rapidly
that they are able to escape. This is the process
of evaporation.

We can look at the progression from gas
to solid as a path to greater order. The gas has
the least amount of order as the molecules race
around. In the solid the order is greatest as each
atom assumes its position.

Both liquids and solids are called condensed
matter. We will look at models for solids in the
next section. In liquids the atoms or molecules
are neither completely free to move nor locked
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into place. That makes them more difficult to
describe, and there is no simple model. That’s
why we will not consider the microscopic aspects
of liquids.

Condensed matter

Some solids consist of molecules held in place
by the forces between them. This is so, for exam-
ple, when large organic molecules form solids. In
other solids the individual atoms are more likely
to be the building blocks. When we talked about
gases we called their constituents molecules. For
solids it is usually more appropriate to think of
the atoms.

In solids the interatomic forces are so strong
that the atoms remain close to each other. The
atoms vibrate about some equilibrium position,
and so have both kinetic and potential energy.
This vibration, the continuous shaking of the
solid, is called its thermal motion. The sum of
the kinetic and potential energies is the internal
energy.

A model that we can call the ideal solid
accounts for some of the thermal properties of
solid materials. In this model the atoms are again
without internal structure. They are connected
to their neighbors by springs that represent the
chemical bonds. The springs follow Hooke’s law,
F = −kx. The atoms vibrate about their equilib-
rium position. The internal energy is the energy
of vibration, which is partly the kinetic energy of
the motion and partly the elastic potential energy
stored in the springs. Both of these energies
increase when energy is transferred to the solid.

In this model the vibrational motion of each
atom is simple harmonic motion, just as for
the diatomic molecules that we discussed earlier.
Again, as each atom vibrates, its energy changes
from kinetic to potential and back. Again, on
average, there is just as much kinetic energy as

potential energy. This time, however, the vibra-
tion can be in any of the three directions, x, y,
and z. We have to count the different parts of
the energy, the different degrees of freedom, sep-
arately for each of these three directions. There
is kinetic energy and potential energy along each
axis, so that there are six degrees of freedom.

We can compare the average internal energy
of an atom in the ideal solid to that of an atom
in a monatomic ideal gas. The internal energy
of the ideal gas is only kinetic. In the ideal solid,
with the addition of an equal amount of potential
energy, it is twice as large. In the model therefore,
for a given number of atoms, the heat capacity is
twice as large as for the ideal gas, namely 3R for
one mole of material.

That this is in fact the case for a number
of solids at and above room temperature was
discovered experimentally by Pierre Dulong and
Alexis Petit in 1819 and is known as the law of
Dulong and Petit.

The model can be extended: as the vibration
increases, eventually the springs no longer follow
Hooke’s law. They “break,” and the atoms are
cast adrift. The solid melts.

Metals

The model of atoms connected by springs can-
not account for the phenomena that characterize
metals, the most important of which is that they
are good conductors of electricity. What charac-
terizes metals is that some of the electrons in the
atoms are separated from the nuclei to which the
others are bound.

The simplest model that includes this pos-
sibility is the free electron model. In it one or
more of the electrons from each atom becomes
detached and “free.” The free electrons can
move throughout the material, leaving behind
the remaining parts of the atoms, which are
now positively charged ions. (In the figure the
electrons are shown as the small circles.)
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This model neglects the forces between the
free electrons. They fly freely through the solid,
and their only energy is kinetic energy, just as for
the molecules of an ideal gas.

It would seem to be straightforward to see
what the internal energy and hence the heat
capacity are for this model. We expect the inter-
nal energy to be larger by the amount of the
kinetic energy of the electrons. Since they are free
to move, they act just like the molecules of an
ideal gas. For a metal in which one electron from
each atom is free, the model therefore leads to
an additional energy of 3

2 nRT and an additional
heat capacity of 3

2 R per mole.
This, however, is not observed! Experiments

show that the heat capacity of metals is close to
that of nonmetals. This was well known by the
early part of the twentieth century. That a metal
has free electrons was also well known. It was
therefore a mystery that the free electrons did not
seem to participate in the internal energy.

This is an example of a model that did not
predict what was observed. The model seemed
reasonable in terms of the knowledge at that
time. Nevertheless its conclusions did not cor-
respond to the observed facts. The discrepancy
made it clear that in some fundamental way
the nature of metals was not understood. Even-
tually it was learned that in metals electrons
were indeed detached from the atoms, but that
their behavior could not be described by classical
mechanics.

There were other indications that the struc-
ture of atoms and the interactions between them
were not understood. The turning point came in
1925 when quantum mechanics was first devel-
oped, and led to today’s understanding of atomic
phenomena. We discuss some of the principles of
quantum mechanics later.

Chemical energy

The forces between atoms are stronger, and the
atoms are held more tightly, in some molecules,
and in some solids, than in others. Chemical
transformations can take place, with atoms of
one kind changing places with those of another.
The positions and the momenta of the atoms, and
of the electrons within them, change, as well as
their potential and kinetic energies.

On the macroscopic scale we call the energy
that is then released or absorbed chemical

energy. On the microscopic scale it represents the
changes in the kinetic and in the electric potential
energies of the electrons and atoms.

Quantum theory

Except for our brief mention of the detach-
ment of electrons in metals, we have not con-
sidered changes within atoms in this chapter.
Such changes generally require more energy than
changes that are external to the atoms.

Each system, whether it is a solid, a
molecule, an atom, or a nucleus, can exist only
with certain definite amounts of energy. They are
said to be in particular energy states. The low-
est state is called the ground state. The others
are called excited states. It therefore takes a def-
inite minimum amount of energy to change the
state of a system. This energy gets larger as we
go down in size to the atom and to the nucleus. It
takes a minimum of 10.2 eV to change the energy
of a hydrogen atom from its ground state to the
first excited state. It takes 2.3 MeV to change a
nucleus of nitrogen (14N) from its ground state.
In each of these cases a smaller amount of energy
cannot be accepted by the system.

Our consideration of the ideal gas showed
that the average kinetic energy per molecule is
3
2 kT. Let’s see how much that is. Boltzmann’s
constant, k, is equal to 1.38 × 10−23 J/molecule-
deg. At room temperature, with T about 300 K,
3
2 kT is about 0.04 eV. This is the average kinetic
energy per molecule in a gas. The amount of
energy that can be exchanged between molecules
when they collide is therefore also about 0.04 eV.
It takes about 250 times as much energy to raise
the energy of a hydrogen atom from that of its
lowest state. (For other atoms the amount of
energy is different, but it is of the same order
of magnitude.) We see that in most collisions
between hydrogen atoms the amount of energy
that can be transferred is not enough to change
the internal energy of the atoms.

This is a fact of great importance. After
all, it was the starting point of our discussion
of the ideal gas that its constituents behave as
particles without internal structure or internal
energy. If the kinetic energy (of about 3

2 kT) were
large enough to change the internal energy of an
atom, the assumption of a rigid atom, one that
is unchanged by collisions, would not have been
appropriate or fruitful.
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Suppose for a moment that there were no
such minimum energy. Even a small amount of
energy given to an atom, either in collisions or
in any other way, could then become internal
kinetic and potential energy of the atom. The
assumption that we made in the ideal gas model
that the atoms have no internal energy, and
are like rigid marbles without internal structure,
could not be made. The real gas would behave
quite differently, and the ideal gas model that
we have discussed here would not represent its
properties.

The definite, finite energy required to change
the energy of an atom, as well as that of a
molecule or solid, plays a crucial role in the sta-
bility of these structures. If they were able to
accept any amount, no matter how small, they
would have properties quite different from those
of a model that treats the atoms or molecules as
particles.

If this had been understood when the ideal
gas model was developed, the quantization of
energy and the quantum theory might have been
discovered much earlier than they were, by a
much more circuitous route, by Planck in 1900.

Back to heat capacities

The heat capacities of all solids decrease as the
temperature is lowered. The molar heat capaci-
ties are then no longer 3R, as expected from the
law of Dulong and Petit. The graph shows the
specific heat capacity of silver as a function of
temperature.

0
300 T (K)

3R

0

Again the model’s predictions do not cor-
respond to what is observed. It was Einstein,
in 1907, who first realized why the old model
was inadequate: it did not take into account the
quantization of energy, i.e., the fact that individ-
ual atoms, as well as solid materials, can exist

only with definite energies separated from each
other.

Energy

The figure shows an energy level diagram.
Each horizontal line represents one of the
allowed energies. For a particle in simple har-
monic motion (i.e., vibrating as if attached to a
spring following Hooke’s law) the energy levels
are equally spaced.

Just as in the ideal gas, the internal energy is
higher at higher temperatures. At temperatures
near room temperature and higher, the spacing
between the possible energies is small compared
to the internal energy and the fact that the energy
is quantized does not play a significant role. As
the temperature decreases, on the other hand,
the internal energy becomes smaller, and the
spacing between the energy levels plays a more
important role.

We saw earlier that when there is potential
energy in addition to kinetic energy, the heat
capacity is larger. In general, the heat capacity is
larger when there are more kinds of energy and
more ways for the energy to be distributed. This
time we have the opposite situation. Because the
energy is quantized there are gaps between the
allowed energies. There are fewer possible val-
ues of the energy and the heat capacity is
smaller.

This is a good example of how the limits
of one model led to the invention of a different
model. In this case it led to important new knowl-
edge, and the confirmation of the quantization of
energy, which had been discovered a short time
earlier.

Diatomic gases

The heat capacity of the monatomic gases is 3
2 nR,

i.e., 1
2 nR for each of the three degrees of free-

dom, represented by mv2
x, mv2

y , and mv2
z . For

the diatomic gases there are two more degrees
of freedom for the vibrational motion’s addi-
tional kinetic and potential energies, and another
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two for the rotations about the two axes. With
contributions of 1

2 nR for each, you expect heat
capacities of 7

2 nR.

Gas C (J/mol K)

H2 20.4

N2 20.8

O2 21.1

CO 21.0

The table shows heat capacities per mole
for some of the diatomic gases at room tem-
perature, and they are seen to be only about
5
2 R( = 20.8 J/mol K). Where did the other two
degrees of freedom go?

1.5R

2.5R

3.5R

T (K)

300K

Here is a schematic graph of the molar heat
capacity of hydrogen as a function of tempera-
ture. We see that at sufficiently high temperatures
the heat capacity really does go up toward 7

2 R.
To see what happens to the heat capacity at lower
temperatures we have to look at the spacing of
the energy levels of the hydrogen molecule. It
turns out that for the rotational motion the spac-
ing is much smaller than for the vibration. So
much so that room temperature is “high” for the
rotational motion and “low” for the vibrational
motion. At room temperature the molecules
don’t vibrate, but they do rotate, leading to the
5
2 R molar heat capacity. At much lower temper-
atures the spacing between the rotational energy
levels also becomes significant (compared to kT),
and the molar heat capacity decreases to 3

2 R.
The spacing between the vibrational levels

is 0.53 eV, so that the energy available, on aver-
age, at room temperature, equal to kT, or about
0.025 eV, is insufficient to raise the energy of

the molecules from that of the ground state. In
other words, the molecules can vibrate only at
much higher temperature. On the other hand,
the energy difference between the ground state
and the first excited rotational state is about
7 × 10−3 eV. Since this is much smaller than kT
at room temperature, there is enough energy at
room temperature to populate many of the rota-
tional energy levels. The energy of the molecules
then includes the rotational energy. This can be
seen in the heat capacity, which is 5

2 R, repre-
senting both the translational and the rotational
degrees of freedom.

7.3 Summary

Whenever we talk about materials, whether they
are gases, liquids, or solids, we have to remem-
ber that we are dealing with enormous numbers
of particles—the atoms and molecules of which
the material is made. It is remarkable how much
we can say about these complex systems by using
simple models. We look in detail at one of the
most successful models, the ideal gas. What we
observe with our senses are the large-scale or
macroscopic objects. Each is made of small parti-
cles (atoms, molecules) on the microscopic scale.
The microscopic features are those of the par-
ticles and their motion. The discussion of the
ideal gas shows how the microscopic features are
related to the properties that we observe on the
macroscopic scale, such as pressure, volume, and
temperature.

On the microscopic level we think in terms
of the number of molecules, N. On the macro-
scopic level we think in terms of the number of
moles, n. The two are linked by Avogadro’s num-
ber, NA, the number of molecules in a mole:
N = nNA.

A real gas consists of particles that move
freely. They have both kinetic energy and mutual
potential energy as they move toward and away
from each other. Together, the sum of these two
kinds of energy for all of the molecules is the
internal energy (often called thermal energy) of
the gas. Each atom and molecule also has inter-
nal energy, but since these energies do not change
so easily they can often be ignored when we talk
about the properties of gases.
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For the model that we call the ideal gas we
make several assumptions. It consists of particles
that have no internal energy or internal struc-
ture and no size. There are no forces between
them except when they collide, so that there is
no mutual potential energy. The only energy of
an ideal gas is the kinetic energy of its particles.
The sum of the kinetic energies of the particles is
the internal energy of the gas.

From our knowledge of mechanics we

showed that PV = 1
3 Nmv2 or PV = 2

3 N 1
2 mv2.

Here P is the pressure (P = F
A ), N is the number

of particles, and 1
2 mv2 is the average energy per

particle.

Empirically, i.e., from observation and
experiment, a relation followed approximately
by many gases is PV = nRT. Here n is the num-
ber of moles and T is the absolute temperature,
i.e., the temperature measured from absolute
zero, the lowest possible temperature, equal to
zero kelvins (0 K) and to −273◦C. R is the univer-
sal gas constant. By comparing the relation from
the application of mechanics to the motion of the
particles to the empirical macroscopic relation

we see that 1
2 mv2 = 3

2 kT, where k (Boltzmann’s
constant) is equal to R

NA
. The relation shows that

the average energy per particle is proportional to
the absolute temperature. The relation is for the
ideal gas, but the conclusion that the particles
of a gas have greater average energy at higher
temperature is always true.

That shows what temperature is: when
energy is transferred to an object (as by heating),
it becomes energy of its constituents, i.e., internal
energy. We detect and perceive the higher inter-
nal energy as higher temperature. A change in the
internal energy can also accompany a change of
structure, i.e., a phase change such as that from
solid to liquid or from liquid to gas.

The pressure at the bottom of a column of
liquid of height h is ρgh, where ρ is the den-
sity of the liquid. Normal atmospheric pressure
is about the same as the pressure at the bottom
of a column of mercury whose height is 76 cm.

In a flowing liquid, energy considerations
lead to Bernoulli’s equation, 1

2ρv2
1 + ρgy1 + P1 =

1
2ρv2

2 + ρgy2 + P2.

The work done on a gas when its volume
changes is PΔV .

7.4 Review activities and
problems

Guided review

1. A cubical box, 1 cm to the side, holds 1000
molecules, each with a mass of 10−25 kg. The
molecules move back and forth in the x direction
with speeds of 1000 m/s.

(a) What is the magnitude of the momentum
of each molecule?

(b) What is the change of momentum when
a molecule hits a wall?

(c) What is the time between collisions of a
molecule with one wall?

(d) What is the average force on one of the
walls perpendicular to the x direction?

(e) What is the pressure?

2. A cubical box, 1 cm to the side, holds 1019

molecules of an ideal gas, each with a mass of
10−25 kg. The pressure is 8 × 104 N/m2.

(a) What is the average kinetic energy per
molecule?

(b) What is vrms?

3. A U-tube contains oil whose density is 0.92
times that of water. The height of the column of
oil on one side is 15 cm greater than that on the
other side. What is the difference in the pressures
above the oil on the two sides?

4. What is the total pressure at the bottom of a
lake at a depth of 30 m?

5. (a) A hole in the ground is filled with water to
a depth of 30 m. A pump is put next to the top
of the hole to pump out the water through a tube
to the bottom of the hole. What happens when
the pump is turned on?

(b) What would be a better arrangement to
pump out the water?

6. An iceberg whose density is 900 kg/m3 floats
in a lake, 90% submerged. When the iceberg
melts, will the level of the lake rise, fall, or remain
the same?

7. To separate two pieces of paper whose area is
10 cm by 10 cm, you blow across them with an
air speed of 2 m/s. What is the resulting force on
each?

8. A pump that produces a pressure difference
of 70 kPa is 0.8 m below ground level. A faucet
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connected to it is on the second floor, 5 m above
ground level. What is the speed of the water
coming out of the faucet?

9. As a balloon rises, its volume goes from 10 m3

to 12 m3. The temperature goes from 20◦C to
−20◦C. The initial pressure in the balloon is
1.1 atmospheres. What is the final pressure in
atmospheres?

10. (a) How many moles of air are in the balloon
of the previous question?

(b) What is the mass of air in the balloon?
(The average molecular mass is about 29 g/mol.)

11. The main constituents of air are oxygen and
nitrogen. What is the ratio of vrms for oxygen to
that of nitrogen?

12. How much energy does it take to heat 1 mole
of a monatomic ideal gas through 18◦C?

13. 1 kg of water (C = 4.18 J
g K ) at 50◦C is

mixed with 0.2 kg of ethanol (C = 2.46 J
g K ) at

0◦C. What is the final temperature?

14. The pressure on five liters of an ideal gas in a
container with a movable wall is raised by 50%.
The temperature goes from 20◦C to 80◦C. What
is the final volume?

15. Two moles of an ideal gas go through a
process during which 104 J of work is done on
it without any change in temperature. Is there
a heat transfer, and if there is, what are its
magnitude and direction?

16. The distance between the two protons in a
hydrogen molecule is 1.5 × 10−10 m. What is the
net force between them?

17. At room temperature hydrogen molecules
rotate freely, but do not vibrate. (The difference
between the vibrational energy levels is much
larger than kT.) What is the internal energy of
one mole of hydrogen at 0◦C?

18. An ice block whose mass is 2 kg is at 0◦C.
It is put into a container with 10 kg of water at
50◦C. What is the final temperature?

Problems and reasoning
skill building

1. In the relation vrms ∝ mx, where m is the
molecular mass, what is x?

2. About how many molecules are in 1 mm3 of
air?

3. The internal energy of an ideal gas is 3
2 nRT.

Why does the internal nuclear energy not get
counted?

4. A scuba diver has 2.5 liters (= 2.5 × 10−3m3)
of air in his lungs when he is 10 m below the
surface. He holds his breath as he rises. What
will the volume (in liters) be when he reaches the
surface?

5. A balloon is filled with air at 20◦C and has
a volume of 4 × 10−3 m3 at atmospheric pres-
sure. It is then submerged and tied to a coral reef,
where the pressure is 250 kPa and the balloon’s
volume is 1.58 × 10−3 m3.

(a) What is the temperature (in ◦C) at the
reef?

(b) What are the internal energies of the gas
at the surface and at the reef?

(c) Is work being done? By what? Can you
tell how much?

(d) Is heat being transferred? By what and to
what? How can you tell?

6. 0.3 moles of an ideal gas at atmospheric pres-
sure is enclosed in a container whose volume, V ,
is fixed. It is first submerged in ice water. Later it
is submerged in boiling water.

(a) Describe the changes in the macroscopic
quantities, T and P, in words. Calculate the final
values of T and P.

(b) Describe the changes in the microscopic
quantity vrms in words. Calculate vrms at both
temperatures.

(c) Draw a graph of P against T for this
process.

(d) Calculate the change in the internal
energy.

(e) Is there a heat transfer? In what direc-
tion? How large is it?

7. A copper coin whose mass is 5 g is dropped
400 m from a building. Air resistance causes it
to slow down so that it has a velocity of 45 m/s
just before it hits the ground. What is the change
in the temperature of the coin as it falls? (C =
0.39 kJ/kg.) Assume that all of the dissipated
energy goes to the coin.

8. What is the amount of energy that must be
removed from 2 kg of water at 20◦C to change
it to ice at −10◦C? (The specific heat capacity
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is 4.18 kJ
kg K for water and 2.09 kJ

kg K for ice.
The heat of fusion is 334 kJ/kg and the heat of
vaporization is 2.26 × 103 kJ/kg.)

Multiple choice questions

1. 4 mol of an ideal gas is compressed at a
constant pressure of 110 kPa from 0.25 m3 to
0.12 m3.

The increase in internal energy is about
(a) 21 kJ
(b) 36 kJ
(c) −21 kJ
(d) −14 kJ

2. An ideal gas is in a container whose volume is
V at a pressure P. The rms speed of the molecules
is vrms. When V increases by a factor of 4, and
P decreases by a factor of 2, vrms is multiplied by
a factor of

(a) 1
2

(b) 4
(c) 2
(d)

√
2

(e) 1
4

3.

P
2

P
1

V
1

V
2

P

V

An ideal gas is initially at P1 and V1. It
changes along the path shown in the PV diagram.
In one cycle (from the starting point all around
and back to the same point on the diagram) the
net work done by the gas is

(a) V2(P2 − P1)
(b) P2V2 − P1V1

(c) (P2 − P1)(V2 − V1)
(d) P2(V2 − V1)
(e) P1V1

4. 7.4 × 10−3 m3 of neon is at a pressure of
470 kPa and a temperature of 87◦C. (The atomic
mass of neon is 20.2 g/mol.) The mass of the gas
(in kg) is about

(a) 0.014
(b) 0.023
(c) 0.096
(d) 0.059
(e) 0.0014

The pressure of one mole of an ideal gas is
reduced from 100 kPa to 50 kPa without chang-
ing the volume of 2 × 10−2 m3. How much heat,
in kJ, is released by the gas during this process?

(a) 2.5
(b) 1.0
(c) 3.0
(d) 6.0
(e) 1.5

5. The graph shows P plotted against T for a
process that takes one mole of an ideal gas from
point A to point B. Which of the following is
correct?

A

B

P

T

(a) The volume increases.
(b) The volume decreases.
(c) The volume remains the same.
(d) Any one of the above is possible.
(e) none of the above is possible.

6. The diagram describes a cyclic process for
an ideal gas. How much work (in J) is done in
one cycle if P0 = 8.1 × 105 Pa and V0 = 7.0 ×
10−3 m3?

4P
0

2P
0

V
0

2V
0

P

V



7.4 Review activities and problems / 157

(a) 11,300
(b) 4320
(c) 21,200
(d) 22,600
(e) 43,200

7. A compound has a solid phase, a liquid phase,
and a gas phase. A sample of this material is
heated at a constant rate. The graph shows the
temperature as a function of time. Which of the
following conclusions can be drawn from this
graph?

t (min)
10 20 30

T
( oC)

(a) The sample never boiled.
(b) The heat of fusion is greater than the heat

of vaporization.
(c) After 5 min the sample is partly solid and

partly liquid.

(d) The heat capacity of the solid phase is
greater than that of the liquid.

(e) After 20 min the sample is totally liquid.

8. The figure shows a process from point A
to point B for an ideal gas. Select the correct
answers from the following:

B                     A 
P

V

(a) Work is done on the gas (W is positive).
Work is done by the gas (W is negative).
(b) The internal energy increases.
The internal energy decreases.
(c) Heat is transferred to the gas.
Heat is transferred from the gas.

9. When P and V of a certain amount of gas
are both raised by 50%, vrms is multiplied by
a factor of

(a) 0.5
(b) 1.5
(c) 2.25
(d) 3
(e) 5


