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We think of the phenomena of mechanics as being everywhere around us, while
electricity is more remote and unusual. It turns out instead that it is the electric
force that dominates almost everything that impinges on our lives, although in
ways that we are not so immediately aware of.

The first thing that comes to mind is the gadgetry of civilization. But more
fundamentally, it is the electric forces between atoms that give rise to the exis-
tence of molecules, liquids, and solids with their endlessly varied properties,
and it is the electric forces within atoms that are responsible for the existence of
atoms and for the structure of the elements.

In this chapter we examine the properties of the electric force, and introduce
the concept of the electric field, which profoundly changed the way we think
about forces.

8.1 The electric force

A world full of charges

We rarely associate everyday experiences with
electric forces. We know that electricity causes
the shock that we sometimes feel after walking

across a carpet, and that it is responsible for light-
ning. But its sweep goes enormously farther. It is
at the root of almost everything that we are aware
of, our very existence in all its vast variety.

On the one hand, our civilization depends,
in some places almost entirely, on electricity. We
use it for light, for heat and cold, and for motors
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in factories, farms, trains, and households. With-
out it there would be no communication by
telephone, radio, or television, and none of the
information technology based on computers.

It is, however, in the microscopic realm that
the electric force reigns supreme. If we look at
the size scale beyond the nucleus, but below the
size of planets and stars, the electrical force is just
about the only one that matters. It holds the elec-
trons to the nuclei to form atoms and the atoms
to each other to form molecules and solids.

All contact forces, i.e., all the pushing and
pulling that we do, is electrical at the point
where atom meets atom. All chemical changes
and transformations are the result of changes in
the position and motion of electrons. This is true
as well of all biological processes.

The electrical nature of our civilization is
apparent all around us. Each time we switch on
the light, or the toaster, or the vacuum cleaner,
pick up the telephone or turn on the radio or the
television set, we affect the motions of electrons.
Each one is so light and small that it is far below
any possibility of having an impact on our senses.
But they cooperate, and flow through wires to
bring about the large-scale, macroscopic effects
that we experience.

The electrical nature of matter is far less
apparent. All atoms contain protons with their
positive charge in the nucleus, surrounded by
electrons with their negative charge. Yes, there
are also neutrons and neutrinos, but except in the
nuclear realm or in the astronomical realm that
is so closely related to it, these neutral particles
play, at best, a subtle role.

We already saw a drastic example in Chapter
2 that showed how strong the electric force is. We
imagined all the protons from just one gram of
hydrogen at the north pole, and all the electrons
at the south pole, 4000 miles away. The force
of attraction between the two turned out to be
the enormous force equal to the weight of about
50 tons.

The force between protons and electrons
is so large that we rarely encounter a situation
where their numbers are not equal. Only under
special circumstances can they be separated from
one another, at least here on earth, and then only
a minute fraction of them.

What we can do is to shift them around with
respect to each other. We can move the elec-
trons a little further away from the protons. We

can cause them to move differently, so that, on
average, the distance between the electrons and
protons in a piece of material is just a little differ-
ent. This is what happens each time a chemical
reaction occurs.

The energy that changes when atoms and
molecules combine or dissociate is commonly
called chemical energy. Each such change,
whether it is as subtle as in biological processes or
as violent as in burning and explosion, is, on the
tiny scale of atoms, a change in electric energy,
i.e., in the electric potential energy and the kinetic
energy of the electrons and atoms.

Electricity and gravitation

The force between two point charges is described
by Coulomb’s law, Fe = k Q1Q2

r2 . If we compare
it to the force between two masses, as given by
Newton’s law of gravitation, Fg = G M1M2

r2 , we
see that the two kinds of forces depend on the
distance, r, in the same way. In both cases
the force between the two interacting objects
(charges or masses) varies inversely with the
square of the distance between them. That gives
us the comfort of familiarity. It also allows us to
take over some of the concepts and calculations
from the earlier discussion.

But the differences between the two forces
are great. Masses always attract, but charges
can attract or repel each other. The magnitudes
are widely different. The electric force between a
proton and an electron is larger by a very large
factor (about 1040) than the gravitational force.
Hence, where the electric force plays any role
at all, its effect is likely to be far more important
than that of the gravitational force.

EXAMPLE 1

A proton is attracted to a stationary electron and is
accelerated toward it.

(a) What is the acceleration of the proton when they
are separated by a distance of 1 m?

(b) As you answered part (a), did you include all of
the forces of interaction between the proton and
the electron? Why or why not?

Ans.:
(a) The electric force on the proton is k e2

r2 .
The proton’s acceleration is k e2

mpr2 = (9 × 109)
(1.6×10−19)2

(1.67×10−27)(12)
= 0.14 m/s2.
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(b) There is also the gravitational force, Fg =
G MpMe

r2 , and the proton’s gravitational accel-

eration, ag = G Me
r2 = 6.67 × 10−11 0.91×10−30

12 =
6.1 × 10−41 m/s2, which is smaller by a factor of
about 1040 and can be neglected.

Separating charges: polarization

When we talk about mechanical forces on a rock
or other object we don’t usually think about
motion that might result inside the object. It is
different for electrical forces. Electrons, and to
a lesser extent nuclei, can move within atoms
and molecules. In metals some of the electrons
can move quite freely. The way charges are
distributed in objects can therefore change in
response to forces on them.

Consider this example: put a positive charge
near an uncharged block. The block may not
have any net charge, but like everything else it is
full of charged particles—its electrons and pro-
tons. The positive charge outside will repel the
positive charges inside, and they will move a lit-
tle away from it. The negative charges will be
attracted and will move closer. The positions of
the charges will now be different for the positive
charges and for the negative charges. The object
has become polarized.

+
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+
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+

Not only that, but the attractive force on the
negative charges, which are now closer, is larger
than the repulsive force on the positive charges,
which have moved away. Hence there is a net
attractive force between the uncharged block and
the charge outside it!

Charged objects occur in nature as ions,
nuclei, and particles such as electrons. Macro-
scopic objects can be charged by rubbing two
dissimilar objects against each other. Electrons
can then transfer from one to the other, leav-
ing both objects charged. Some materials, such
as hair, lose electrons easily. Others capture
electrons easily.

Charges are rarely fixed in space, and actual
situations can be quite complicated. Electrons in
atoms and solids, for example, are never at rest.

As we study the effects that charges have on one
another we may have to consider examples and
problems that are simplified and not completely
realistic.

EXAMPLE 2

Rub a balloon with your hair. Some electrons transfer
from the hair to the balloon. Rub a second balloon
with a sheet of plastic. Electrons will transfer from
the balloon to the plastic.

(a) What happens when the two balloons are
brought close to each other?

(b) What happens to your hair?

Ans.:
(a) The first balloon carries an extra negative

charge. The second balloon carries an extra
positive charge. The balloons attract.

(b) The hair is left positively charged. The indi-
vidual hairs repel each other and will tend to
“stand up.”

8.2 The electric field

What is a field?

The idea of the electric field, and of fields more
generally, is one of the most powerful that
physics has given us. It has changed the way we
think of interactions and forces, whether they are
electric, gravitational, or of any other kind.

We introduce it in a way that gives barely a
hint of its possibilities. One charge exerts a force
on a second charge. Let’s say the same thing dif-
ferently: the first charge creates an electric field;
the second charge is in that field, and as a result
it is acted on by a force.

+ +
Q

1
Q

2
F

Nothing is changed operationally. Only the
force is observable. The field is an artifice, an
invention. Yet our perception has changed.
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Can we think of another example of an “immate-
rial” field? Here is one that is more elusive and
fanciful: think of a person, first alone. By out-
look and appearance, manner and gesture, that
person affects his or her environment. If another
person enters the “field” of the first one, this sec-
ond person is affected differently, and as a result
behaves differently, depending on the perception
of “friendliness,” or otherwise, of the first one.

The interaction requires two people, but you
can imagine a “friendliness field” created by just
one. Similarly, the electric field is there even if you
have just one charge. But for a force to exist it
takes two.

The first charge, just by its existence, creates
a field. The field is everywhere. It is unseen and
undetected, until another charge is placed some-
where, and experiences a force as a result of being
in the field.

We can use the second charge as a probe, or
test charge. If it is acted on by a force, it shows
that there is a field. We can calculate what the
force on the test charge will be once we put it
there. After all, we know Coulomb’s law. All we
need to know is how large the charges are and
how far they are from each other.

We define the direction of the field at a point
to be the same as the direction of the force there
on a positive charge. We define the magnitude of
the field as the magnitude of the force divided by
the magnitude of the test charge.

EXAMPLE 3

Go to the PhET website (http://phet.colorado.edu)
and open the simulation Charges and Fields. Select
“Run now.” Select “grid.”

With the mouse, pull a positive charge from
its “box” on the right to the middle of the screen.
Select “Show E-field.” The arrows show the direc-
tion of the electric field. They are fainter where the
field is smaller. Pull an “E-sensor” from its box to a
place near the charge. Its arrow shows the direction
and the magnitude of the field. Compare its arrow
to the other field arrows. Deselect “show E-field” to
see the E-sensor arrow more clearly. Move it around
the charge at different distances from the charge to
explore the field.

Ans.:
The field is away from the charge. It becomes smaller
as you move away from the charge.

In one sense we have done nothing. There
isn’t anything, so far, that we can describe or
calculate by using the concept of the electric field
that can’t also be done without it. Yet the way
we look at what is happening, and the way we
think about it, has profoundly changed.

We no longer need to think of the two
charges exerting forces on each other across the
empty space between them. We now have a way
for them to communicate directly. The field is
created by a charge and spreads out from it. It
is the field that then exerts a force on any other
charge in it, right there where the charge is.

The story is similar for the gravitational
field. The earth, just by its existence, creates a
gravitational field. The field changes the space
around the earth. A ball flying through the field
is affected by it, and experiences a force. It is
no longer a force of the earth, somehow reach-
ing out through empty space. The field provides
the communication and interaction between the
earth and the ball.

EXAMPLE 4

On a sketch of the earth, draw vectors for the
force on an object outside it, at eight evenly-spaced
places.

(a) Where do they point?

(b) What approximation did you have to make to
reach the answer to part (a)?

(c) We define the gravitational field similarly to the
way we define the electric field: it is the force
on a test mass divided by the test mass. What is
the direction of the gravitational field near the
surface of the earth?

Ans.:
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(a) They point toward the center of the earth.

(b) The force vectors point to the center only if
the earth is spherically symmetrical, i.e., if we
assume that the earth’s density at any point
depends only on the distance from the point to
the center, and not on the angle, i.e., the den-
sity, ρ, is a function only of the radial distance,
r: ρ = f (r). In addition, we are assuming that
the influence of all other astronomical bodies is
negligible.

(c) The gravitational force on the test mass and
the gravitational field are in the same direction.
Since the force is down, toward the center of the
earth, the gravitational field is also.

From what we have said so far, we see the
electric field as an aid to the calculation of electric
forces. That alone would be useful. But there is
much more. It turns out that the field has its own
independent existence. It is created by a charge,
but it can move off, through empty space, in ways
that are no longer tied to its origin.

This is the real triumph of the field: elec-
tric and magnetic fields can propagate through
space. Light waves, radio waves, electromagnetic
waves of all kinds move through otherwise empty
space. They are created by charges, but float off,
disembodied, on their own.

The electric field is still what we said it was at
the beginning: it tells us that at any point where
there is an electric field, there will be an electric
force on a charge, if we put one there. Since force
is a quantity that has both magnitude and direc-
tion, i.e., is a vector quantity, the same is true
of the electric field. Quantitatively, if we know
the magnitude and direction of the electric field
at some point and the sign and magnitude of the
charge that we put at that point, we can calculate
the force on the charge, exerted by the field.

EXAMPLE 5

Here is a different kind of field. The cheese creates
the field. The mice feel the effect of the field. The
field is stronger closer to the cheese, as is shown on
the diagram by the greater enthusiasm of the mice as
they get closer.

In this case the field consists of molecules
released by the cheese and diffusing in the air. This is
very different from the electric field, where no atoms
or molecules of any material are involved.

(a) Which of the following graphs could describe
the field strength as a function of the distance
from the smelly cheese?

(b) Which graph could describe the electric field as
a function of distance from a point charge, q?

(a) (b) (c) (d)

r r r r

Ans.:
The “cheese field” is very different from an electric
field. What it is likely to have in common with the
electric field of a point charge is that it decreases as the
distance from the “source” increases. The decrease
is, however, very unlikely to be linear, with a definite
end, as in (d). We reject the increasing and the con-
stant field. This leaves (c), where the field decreases
strongly close to the cheese, and then more gradually
as the distance from it increases.

The same is true for the electric field of a point
charge. In this case we know the way in which the
magnitude of the field changes with the distance from
the source. We know that the force decreases as 1

r2 ,
so that E ∝ 1

r2 .

Coulomb’s law revisited:
force and field

Let’s look at Coulomb’s law again. We can think
of one of the charges, Q1, as the source of the
electric field. The other, Q2, at the point P, expe-
riences the field created by the first charge. It is
acted on by the electric force. The force on Q2 is
described by Coulomb’s law, and has the mag-
nitude F12 = k Q1Q2

r2
12

, where r12 is the distance

between Q1 and Q2. The direction of the force
is such that the two charges repel if they have the
same sign and attract if their signs are opposite.
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Now separate the force equation into two
parts:

F12 =
[

kQ1

r2
12

]
[Q2]

We call the first part on the right-hand side of
this relation EP, the electric field created by Q1

at the point P, a distance r12 from it.

+

Q
1

r
12

E
P
= kQ

1
/r

12
2

We can now write the force relation as F12 =
EP Q2.

This is a relation between the magnitudes of
the force and the field. But both are vector quanti-
ties that also have direction. We can incorporate
the direction by making it a vector equation and
letting Q2 be positive or negative:

F12 = EP Q2

F
12

= E
P
Q

2

F12 and EP are in the same direction if Q2 is
positive and in opposite directions if Q2 is nega-
tive. The direction of the electric field is defined
so that a positive charge experiences a force in
the same direction as the field and a negative
charge experiences a force opposite to the field
direction.

EXAMPLE 6

(a) What are the units of E?

(b) What is the electric field of a −5 nC (−5 ×
10−9 C) charge at a point 1.2 m to the left of
the charge?

Ans.:
(a) The relation EP = F12

Q2
shows that the units are

those of force divided by charge, or N/C.
We can also look at the source relation for

E: E = kQ1
r2 . We know from Coulomb’s law that

the units of k are N m2

C2 . The units of E are then

( N m2

C2 )(C/m2) or N/C.

Q
1E

P

r
12

-

(b) The magnitude is EP = kQ1
r2
12

= (9×109)(5×10−9)
1.22 =

31.25 N / C. Since Q1 is negative, the electric
field vector is in this case toward the charge, to
the right.

EXAMPLE 7

A charge of +4 nC is at a point P where the electric
field is 20 N/C to the left.

(a) What is the force on the charge?

(b) What do we know about the source of the field?

Ans.:
(a) The charge experiencing the force is 4 nC. Hence

the magnitude of the force is F12 = Q2EP =
80 × 10−9 N. Since Q2 is positive, F12 and EP

are in the same direction, to the left.

(b) The force on the charge tells us the magnitude
and direction of the electric field, but provides
no information about the sources of the field.

We have taken the perfectly symmetric
Coulomb’s law, where each charge plays the
same role, and separated it into two parts: the
source (Q1) and the probe (Q2). The first charge,
Q1, is the source of the electric field, the second
charge, the test charge Q2, probes the effect of
the field.

As long as there is no charge anywhere
except for Q1, the field is a figment of our imag-
ination. Only when a second charge (Q2) is put
at some point does the field become observable.
There is then a force on Q2, equal to the field at
that point, multiplied by Q2.

We see that there are two ways to find out
what the electric field is. We can either start with
the source charge (Q1) or with the test charge
(Q2).

To use the test charge, we have to know or
determine what force, F, it experiences. Since F =
Q2E, the electric field at a point, E, is equal to the
force on the test charge at that point, (F), divided
by the amount of the charge Q2, i.e., E = F

Q2
.

In this case we need to know nothing about the
sources of the field.
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The second way to find E is to start with the
sources of the field. If there is only one point-like
source charge, Q1, the magnitude of the field at
a distance r1 from it, at a point P, is kQ1

r2
1

. If Q1

is positive, the direction of the field is away from
the charge, and it is toward Q1 if the charge is
negative.

If there is more than one source charge, each
one, Qn, contributes a field vector at P, a distance
rn away, whose magnitude is kQn

r2
n

, and whose

direction is away from Qn if Qn is positive and
toward Qn if the charge is negative. To find the
total electric field E at P, all of these vectors have
to be added up.

EXAMPLE 8

(a) Go to the PhET website (http://phet.colorado.edu)
and open the simulation Charges and Fields.
Select “grid.” Put two equal positive charges
on a horizontal line 20 divisions apart. Move
an E-sensor along that line from the far left to
the far right and describe the variation of the
field qualitatively. Could you have predicted the
direction of the field to the left of both charges,
to the right of both charges, and between the
charges?

(b) Do the same along the vertical line half-way
between the two charges.

Ans.:
(a) While the sensor is to the left of both charges,

the field is to the left. This is as you expect; the
force on a positive test charge in this region is
the vector sum of two forces, both to the left,
one from each of the two charges on the line.

The field becomes very large as you get close
to the left charge. It reverses direction and is to
the right as you move the sensor to the region
between the two charges. As you move the sen-
sor further to the right the field becomes smaller,
until it reaches zero in the middle. Again this is
what you expect. The force on a test charge is to
the right from the left charge and to the left from
the right charge. (In both cases it is away from
a positive charge.) The two contributions are in
opposite directions, and in the middle they can-
cel. Moving closer to the charge on the right the
field becomes larger, as the contribution from
the right charge predominates.

In the region to the right of both charges
the field is away from both, to the right, and

becomes smaller as the sensor is moved further
to the right.

(b) The field is upward above the line and down-
ward below the line.

+ +Q
1

E
1

E
2

Q
2

E
1

E
2

E
1
+ E

2 

We already know that on the line, half-way
between the charges the field is zero because the
contributions to the field from the two charges
add up to zero. At other points along the verti-
cal line each contribution to the field has two
components: the horizontal components have
the same magnitude and are in opposite direc-
tions. They cancel. The vertical components are
in the same direction, and they add. Alterna-
tively, we can add the vectors representing the
fields E1 and E2 from the two charges end to
end, as on the right side of the figure.

The field is zero half-way between the
charges. It also goes to zero far from the charges.
Its magnitude therefore has a maximum at some
point above the line joining the two charges and
at a point symmetrically located below.

EXAMPLE 9

Q
1

Q
2

4 m

P

Two equal charges, Q1 and Q2, each 8 μC, are 4 m
from each other. The point P is midway between the
two charges.

(a) Both charges are positive. What is the electric
field at P?

(b) Q1 is negative and Q2 is positive. What is the
electric field at P now? What is the force on a
+5 μC charge at P?
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Ans.:
(a) The fields at P of Q1 (E1) and Q2 (E2) have

the same magnitude and are in opposite direc-
tions. The two vectors add up to zero, so that
the electric field at P is zero.

E
1E

1 E
2

E
2

(b)(a)

(b) In this part the fields E1 and E2 are in the
same direction, to the left. (E1 is toward Q1

and E2 is away from Q2.) Each has magni-
tude (9×109)(8×10−6)

22 = 1.8 × 104 N/C, so that
the field from both is 3.6 × 104 N/C. The force
on a +5-μC charge is (5 × 10−6)(3.6 × 104) or
0.18 N to the left.

EXAMPLE 10

Q
3

Q
4

Q
1 Q

2

4 m

P

Four equal charges, Q1, Q2, Q3, and Q4, each
5 μC, are at the corner of a square whose sides
are 4 m.

(a) All charges are positive. What is the electric field
at the point P in the center of the square?

(b) For this part Q1 and Q4 are positive and Q2

and Q3 are negative. What is the direction of
the electric field at P?

(c) What is the magnitude of the field at P in
part (b)?

Ans.:
(a) The four vectors E1, E2, E3, and E4 point away

from the four charges. They add up to zero.

(b) This time the two vectors E1 and E3 point in
the same direction (away from Q1 and toward
Q3), and so do E2 and E4. Their y components

PP

E
3

E
3

E
4 E

4

E
1

E
1

E
2

E
2(a) (b)

x

y

cancel and their x components add, so that
the total field at P is in the x direction, to the
right.

(c) The distance from any corner to the center of
the square is 2

√
2m. The field from Q1 at P,

E1, is kQ1

(2
√

2)2
= (9×109)(5×10−6)

8 = 5625 N/C. Its
x component is E1 cos 45◦ = (5625)(0.707) =
3977 N/C. The x components of E1, E2, E3, and
E4 are the same. The total field at P is therefore
4E1 cos 45◦, or 1.59 × 104 N/C.

We could use the same procedure to find the field
at some other point, not at the center of the square.
There would again be four vectors to add, but each
would have a different magnitude and point in a dif-
ferent direction. The addition procedure would be
much more time consuming. We see that the symme-
try of the problem that we have solved makes it much
simpler.

8.3 Field lines and flux

Lines to represent the field

There is a wonderful and productive geometric
representation that allows us to get an intuitive
but rigorous and detailed feeling for the electric
field.

We associate with each positive charge, Q,
a number of electric field lines emerging from it.
The direction of an electric field line, at any point
on it, is the same as the direction of the electric
field. If the charge is negative, the lines go toward
it, so that the lines begin at positive charges and
end at negative charges.

++
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So far a drawing of the field lines is a
representation that shows the direction of the
electric field. We can go further and also incor-
porate its magnitude. We do this by letting the
number of lines divided by the area that they
cross (at right angles to the lines) represent the
magnitude of the electric field. This means that
the lines are closer together where the field is
stronger.

Here is why the field concept works: think of
an imaginary sphere with a charge at its center.
Coulomb’s law tells us that the field is pro-
portional to 1

r2 . The area, A, of the sphere is
proportional to r2. The two factors cancel in the
product EA so that the result is independent of
r. E is the number of lines through the surface
of the sphere, per unit area. EA is therefore just
the number of lines through the surface of the
sphere. If this number does not depend on r, the
number of lines is the same through all possible
spheres with this charge at the center, regardless
of their radius.

The cancellation of r2 is the crucial fact that
leads to the importance and usefulness of the
electric field lines. It is the result of the conflu-
ence of two quite separate features, one that is
characteristic of the electric field and one that is
purely geometric. The first is the power “2” of r
in Coulomb’s law, so that E = k Q

r2 . The second is
the power “2” of r in the surface area of a sphere,
A = 4πr2. It is the fact that these two numbers
are precisely the same, so that they cancel, that
makes the description of the field by field lines
possible. If these two powers were not equal,

++
r

1

r
1

2

r
2

2

r
2

Q

Q

Q

Q
ε

0

ε
0

a set of continuous lines could not describe the
field.

We can look at the same story more pre-
cisely: what is the actual number of lines emerg-
ing from a single positive charge, Q? Draw
an imaginary spherical surface around Q, with
radius r. The electric field at the surface of the
sphere is perpendicular to the sphere, and its
magnitude is k Q

r2 , where k is the proportional-
ity constant in Coulomb’s law. The surface area,
A, of the sphere is 4πr2. The number of lines
through the spherical surface is EA, or (k Q

r2 )
(4πr2), which is equal to 4πkQ.

k is also often written as 1
4πε0

, where ε0 is
called the permittivity of free space. (We will
generally just use the symbol, rather than this
unwieldy terminology and its numerical value.)
The number of lines through the sphere can then
be written as Q

ε0
.

Electric flux

So far we have just one charge, Q, with Q
ε0

lines
through the surface of our imaginary sphere,
coming from the charge at its center if it is pos-
itive and going toward it if it is negative. The
number of lines crossing the surface per unit
area represents the magnitude of the electric field,
and the direction of the lines is the same as the
direction of the electric field.

The total number of the electric field lines
crossing the surface area of the sphere is EA,
where E is the magnitude of the electric field and
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A is the surface area of the sphere. The quan-
tity EA is called the flux of the electric field, or
just the electric flux, through the surface of the
sphere. We see that the flux of E through the
imaginary surface is equal to Q

ε0
. The symbol Φ

(Greek capital phi) is usually used for it.

E

a

θ

Ea cos

For the sphere with the charge at its center
the electric field lines are perpendicular to the sur-
face. In cases where they cross at other angles we
define the flux as E⊥A, where E⊥ is the compo-
nent of E perpendicular to the area.

Again, we haven’t done anything. We have
introduced the terms electric field and flux, but
except for these new words we still have only
Coulomb’s law, expressed just a little differently.
With the introduction of the electric field lines,
however, we have a new representation.

EXAMPLE 11

A charge Q is at the center of a cube. What is the flux
through the top surface of the cube?

Ans.:
With Q in the center, the sides are located sym-
metrically with respect to Q. In other words, it
doesn’t matter which side we call the top surface. The
flux through each is the same and is 1

6 of the total
flux of Q

ε0
. The flux through any one side is there-

fore Q
6ε0

.
Note that we can answer the question without

knowing how large the cube is, or finding E at any
point on the surface of the cube. To find the field at
every point on one of the square sides, and then to

A

+Q

Q
ε

0

lines

A

Q
ε

0

linesQ = q
1 
+ q

2 
+ q

3
,

q
3

q
2

q
1

+

Q
ε

0

lines

add them up to find the flux, would be a very difficult
problem. It is the symmetry of the configuration that
makes the problem easy. This kind of simplification
is characteristic of questions that can be answered by
symmetry considerations.

Charge, field, and flux:
Gauss’s law

The electric field lines are much more than a tool
for the visualization of the field. They give us
a description that can be vastly generalized. It
doesn’t even matter whether Q is at the center
of the imaginary sphere. The number of lines
through the sphere, i.e., the flux of E through
it, is still equal to Q

ε0
. And if there is more than

one charge, this result remains, as long as we
let Q represent the total net charge within the
sphere. It doesn’t matter how many charges there
are, where within the sphere they are, or how
much of the charge is positive and how much is
negative.

In fact, why stick to a sphere? All closed
surfaces will have the same property: the flux
of E through any closed surface is equal to 1

ε0
times the total net charge within the surface. This
statement is called Gauss’s law.

All we have done is to follow Coulomb’s
law, and let it lead us in a new direction. No
additional physical law has entered our devel-
opment. Gauss’s law is entirely equivalent to
Coulomb’s law. Each can be shown to follow
from the other. But Gauss’s law gives us an
important additional tool for looking at electric
fields.

The two laws look very different. Gauss’s
law allows new calculations and leads to new
insights. It, rather than Coulomb’s law, is gen-
erally considered to be one of the fundamental
laws of electromagnetism, known as Maxwell’s
equations.



168 / Electricity: It Is Everywhere

EXAMPLE 12

A sphere whose radius is R carries a net positive
charge Q, uniformly distributed. (This means that
for each piece of the sphere with volume ΔV , with a
charge ΔQ in it, the charge density ΔQ

ΔV is the same
throughout the sphere. Here the symbol “Δ” denotes
a small amount of charge or volume, not, as before,
a change in these quantities.)

(a) What is the flux through the surface of the
sphere?

(b) What is the electric field at the surface of the
sphere?

(c) What is the flux through an imaginary spherical
surface outside the charged sphere, a distance r
from the center?

(d) What is the electric field at the imaginary sur-
face?

(e) How do the answers to parts (c) and (d) dif-
fer from what they would be if all of Q were
concentrated at the center?

Ans.:
(a) From Gauss’s law the flux through any closed

surface is equal to Q
ε0

, where Q is the net charge

inside the surface. Hence the flux is Q
ε0

.

(b) The electric field has the same magnitude at each
point on the surface of the sphere and is directed
outward. The flux through the surface of the
sphere is EA, so that the field is E = Q

ε0A , where

A = 4πR2, so that E = Q
4πε0R2 or kQ

R2 .

(c) Q
ε0

.

(d) kQ
r2 .

(e) The field lines outside the charged sphere look
exactly as they would if all of the charge were
at the sphere’s center. Therefore the field a dis-
tance r from the center (and outside the charged
sphere) is the same as if Q were at the center.

The example shows that the number of lines
from a single point charge is the same as for a
sphere in which this same amount of charge is
distributed uniformly throughout the sphere. We
can make the result more general: if the charge
is distributed with spherical symmetry (i.e., if
the charge distribution looks the same from any
angle), the electric field outside the sphere is

the same as for the same charge concentrated at
the center of the sphere. The example illustrates
how Gauss’s law can use symmetry to simplify a
problem.

The gravitational field: solving
Newton’s problem

Use mass instead of charge. Change the propor-
tionality constant. That’s all that distinguishes
Newton’s law of gravitation from Coulomb’s
law. The essential part is the same: the power
of r is still −2. The lines of the gravitational field
have all the properties of the lines of the elec-
tric field. We know of no negative mass, so
that the story is simpler, and the field always
points toward a mass. Gauss’s law holds for the
gravitational field just as it does for the electric
field.

We can now use Gauss’s law, just as for
the electric field, to describe the gravitational
field outside a sphere whose mass is uniformly
distributed, or more generally, distributed with
spherical symmetry. It is the same as if all the
mass were at its center.

That the gravitational field outside a spher-
ically symmetric mass distribution is the same as
it would be if all the mass were concentrated at
the center is the single important result of the
application of Gauss’s law to gravitation. Of
course the earth is not a perfect sphere. Each per-
son walking across the street, each ant, for that
matter, destroys that symmetry.

Even the highest mountain in America is
smaller than 1

1000 of the earth’s diameter. A
greater departure from sphericity is that the
diameter from pole to pole is about 43 km less
than the diameter of the equator. That’s about

1
300 of the earth’s diameter, so the difference is
still not great. The density of the earth changes
as we go closer to the center, but we ask only
for spherical symmetry, not for homogeneity.
A homogeneous object has the same properties
everywhere. For a spherically symmetric one they
may change, but only with the distance from
the center. A spherically symmetric object looks
the same from any angle. Although the earth (as
well as the other planets and moons, and the
stars) is not a perfect sphere, the deviations from
spherical symmetry are so small that the simple
result of Gauss’s law for a sphere is sufficient and
appropriate most of the time.
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Gauss’s law and symmetry

We have seen that if there is some symmetry
in a physical situation we can often draw some
very general conclusions quite simply. Most of
us don’t have much experience with this kind of
thinking, so it may be helpful to look at some
more examples. Problems with symmetric charge
distributions are just what Gauss’s law is good
for.

We have just seen the most important one:
for a charge Q at a point, or uniformly dis-
tributed throughout a sphere or on the surface of
a sphere, or, most generally, if the charge density
depends only on r, the distance from the center,
the electric field outside the charge distribution
is directed along the radius, and its magnitude is
kQ
r2 or Q

4πε0r2 . In each of these cases the charge is

distributed with spherical symmetry.
There are two other situations where

Gauss’s law leads to a simple relation for the
field, that of cylindrical symmetry, and that for
an infinite plane.

The cylindrical case is that of a long charged
line, like a metal rod, or a cylinder, such as a
tube or thick cable. The linear charge density is
the total charge, Q, divided by the length, L, and
is usually called λ (Greek lambda), equal to Q

L .
The electric field is at right angles to the line or
to the curved part of the cylinder. (This is exactly
true only if the line is infinitely long, but it may be
a good approximation for a finite line far enough
from its ends.)

r
q=λ

l

l

lA=2πrEA= q
ε0

Look at an imaginary cylindrical surface
of radius r and length � surrounding the line
or cylinder concentrically, with an amount of
charge Q inside the surface. The surface area of
its curved part is A = 2πr�. Because the electric
field is at right angles to the curved surface, there
is no flux through the flat ends if the cylinder.

The total flux through the cylinder is equal to
the flux through the curved part of its surface, A,
and is equal to EA. From Gauss’s law it is equal
to Q

ε0
, so that E = Q

ε0A , which is equal to Q
ε02πr�

or λ
2πε0r .

EXAMPLE 13

Q

λ

A wire, 10 m long, is charged uniformly with a charge
of 5 μC. A charge of Q = 3 μC is at a point on a line
perpendicular to the wire at its center, 1.5 m from the
wire. What is the force on the charge Q?

Ans.:
The question can be answered with the relation that
we have derived from Gauss’s law if we can assume
that the wire is infinitely long. Since the wire is much
longer than the distance from the wire to the charge,
this is probably a good approximation.

The electric field of the wire, at the point where
the 3 μC charge is located, is

E = λ

2πε0r
, or

2λ

4πε0r
= 2kλ

r

λ = 5 × 10−6 C
10 m

= 0.5 × 10−6 C/m

E = (2)(9 × 109)(0.5 × 10−6)
1.5

= 6 × 103 N/C

The force on the charge is F = EQ = (6 ×
103)(3 × 10−6) = 0.018 N.

Because the wire is not infinitely long there are
field components parallel to the wire at all points
except on the central plane, perpendicular to the wire,
on which Q is located. At Q the field is perpendicular
to the wire and away from it, and this is also so for
the force on Q.

Because the wire is not infinitely long, E will
actually be somewhat smaller than the result that we
have calculated.

The third case that we will look at is that of
an infinitely large plane, charged uniformly with
a surface charge density (charge per unit area) of
σ. (There are, of course, no infinitely large planes.
Our main application will be to the field between
two planes, separated by a small distance.) We
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can tell from the symmetry that E must be at right
angles to the surface. Pick a part of the surface,
with area a, and surround it on both sides of
the plane with an imaginary cylinder. The charge
inside the cylinder is then σa.

Because the field is at right angles to the
plane there is no flux through the curved part of
the cylinder. But lines go out from the plane on
both sides of it through the top and the bottom
of the cylinder, each with area a, for a total area
2a. With an electric field magnitude E outward
from each surface, the flux out of the cylinder is
(E)(2a).

a

q= σa

qqq

aa

From Gauss’s law we know that the flux is
equal to Q

ε0
, where Q is the amount of charge

inside the cylinder, which here is σa, so that the
flux is σa

ε0
. Putting the two relations for the flux

together, we see that (E)(2a) = σa
ε0

, or E = σ
2ε0

.
That’s it for Gauss’ law. It is always true,

but these are among the few situations where it
leads to simple results.

EXAMPLE 14

A negative charge of −5 nC is at a point P near a large
(assume infinite) single plane that carries a charge
with a constant surface charge density of +2 nC/m2.

(a) Is it possible to find the electric field at a point
near the plane without knowing how far the
point is from the plane?

(b) What are the magnitude and direction of the
field at P?

(c) What is the force on the charge?

Ans.:
(a) The electric field near an infinite plane is con-

stant and equal to σ
2ε0

, which is independent of
the distance from the plane.

The field lines are perpendicular to the plane.
Their density (the number crossing a unit area),
which is equal to E, does not change.

Qualitatively, the further away from the
plane a point is, the greater the contributions
to the field from distant points on the plane.
Since the plane is assumed to be infinitely large,
there will be distant regions that will contribute,
no matter how far away from the plane a
point is.

(b) E = σ
2ε0

, with lines away from the plane and per-

pendicular to it. 1
4πε0

= 9 × 109, so that 1
ε0

=
36π × 109 SI units.

E = (2 × 10−9)(
1
2

)(36π × 109)

= 36π or 113 N / C

(c) F = EQ = (113)(5 × 10−9) = 5.5 × 10−7 N.
The direction of the force is opposite to

the direction of the field because the charge is
negative. It is toward the plane.

EXAMPLE 15

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + 

−σ

+σ

Two large metal planes are separated by a distance
of 2 cm. The upper one is charged negatively and
the lower one positively, each with a surface charge
density of 5 nC/m2.

(a) Describe the electric field lines.

(b) What is the electric field between the planes?

(c) What is the electric field away from both planes?

Ans.:
(a) Electric field lines start at positive charges and

end at negative charges. (Although we have
talked about isolated charges, for each positive
charge there is an equivalent negative charge
somewhere.) In this case the lines go from
the positively charged plane to the negatively
charged plane.
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Alternatively, we can add the field contribu-
tions from the two planes. Between them there
is a field σ

2ε0
upward from the positive plane

and a field equally large toward the negative
plane. Together the two fields add up to a field
σ
ε0

upward.

(b) E = σ
ε0

= (5×10−9)(36π×109) = 180π = 5.65 ×
102 N/C.

(c) In the region above both planes there is a field
down toward the negative plane and a field up
away from the positive plane. They have the
same magnitude, and add up to zero. Similarly,
the field is zero below both planes.

The configuration described in this example is
called a capacitor. It stores charge on each of the
two plates. It also stores the uniform electric field
in the region between the plates. Since the problem
states that the plates are “large,” we have tacitly
assumed that we can use the approximation that they
are infinitely large. This is a good approximation as
long as the distance between the plates is small com-
pared to their length and width. The approximation is
best in the central region and least appropriate near
the edges, where the field lines curve outward. The
field near the edges, where it is no longer uniform, is
called the fringing field.

8.4 Summary
The electric force is the second of the funda-
mental forces of nature. While Newton’s law
describes the interaction between bodies that
have mass, Coulomb’s law describes the inter-
action between charges. The gravitational force
is always attractive, but the electric force can be
one of attraction or repulsion. The electric force
depends on the magnitude and the sign of the
charges and on how far apart they are from each
other: Fe = k Q1Q2

r2 .

The attractive force between the negatively
charged electrons in the atoms and the posi-
tively charged protons in the nucleus of the atom
holds the atom together and is responsible for
the structure of all atoms, molecules, and their
combinations.

An object is polarized when the average posi-
tions of the positive and negative charges in it are
not the same.

We can describe the electric force by using
the concept of the electric field: each charge
creates an electric field that surrounds it. Another
charge that is in the field experiences a force. The
electric field is a vector quantity. Its calculation
can quickly become complicated as the number
of charges grows. We therefore looked at some
of the simplest charge distributions, particularly
those where we can make use of symmetry to
simplify the calculations.

A charge Q1 has an electric field around it
with magnitude E1 = k Q1

r2 . The direction of the
field is away from a positive charge and toward
a negative charge.

If there are several charges, each contributes
to the field. The total field at a point is equal
to the vector sum of the field vectors from each
charge.

A mass m has a gravitational field around it,
of magnitude g, toward the mass.

In an electric field E1 a charge Q2 experi-
ences a force E1Q2. The force is in the direction
of the field if Q2 is positive and in the direction
opposite to the field if the charge is negative.

As an aid to visualizing the field we use elec-
tric field lines. The lines begin at positive charges
and end at negative charges. The direction of the
lines is the direction of the electric field.

When a field, E, is perpendicular to an area,
a, the electric flux through the area is Ea. If the
normal to the area (the line perpendicular to a)
makes an angle θ with the field, the flux through
the area is Ea cos θ.

The flux (Ea) from a point charge, or
the number of field lines coming from a point
charge, is Q

4πε0r2 4πr2, or Q
ε0

. Here k = 1
4πε0

=
9 × 109 Nm2

C2 . This is also the flux (or the num-
ber of lines) emerging from a closed surface that
contains a net charge Q. (This statement is called
Gauss’s law.)

The field outside a spherically symmetric
charge distribution is the same as that of a
point charge (with the same total charge) at its
center.

The field on each side of a positively charged,
infinitely large plane is σ

2ε0
. If the field is only on
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one side, its magnitude is σ
ε0

. This is also the field
inside a (infinitely large) capacitor.

8.5 Review activities and
problems

Guided review

1. A proton is released from rest at a distance of
0.5 m from an electron.

(a) What is its initial acceleration?
(b) What is the ratio of this acceleration

to the gravitational acceleration that results
from the gravitational force between the two
particles?

2. Go to the PhET website and open the simu-
lation Balloons and Static Electricity. The fol-
lowing should be checked as you start: “show
all charges,” “ignore initial balloon charge,” and
“wall.”

(a) Drag the balloon to the sweater and rub
it against it. Move it back to where it started and
let go. What happens? Why?

(b) Move the charged balloon toward the
wall. What happens to the charges in the wall?
What happens when you let go of the balloon
near the wall? Why?

(c) Click on “two balloons.” Charge both
of them. Get one of them to move slowly in the
middle. Can you push it toward the wall with the
other balloon? What is meant by polarization?
Describe the polarization of the wall.

3. Go to the PhET website and open the simula-
tion Charges and Fields. Pull out a charge. Use
the E-field numbers and the tape measure to find
the magnitude of the charge. (The unit V/m is the
same as the unit N/C.)

4. (a) On the sketch of a positively–charged
sphere, draw vectors for the force on another
positive charge outside the sphere at eight places,
each at the same distance from the sphere.

(b) Repeat for a negative charge in the
vicinity of the same positively–charged sphere.

5. (a) Which of the graphs best describes the
magnitude of the gravitational field as a function
of distance, going from the surface of the earth
to a point half-way to the moon?

(i)                             (ii)                      (iii)                             (iv)

(b) Which one best describes the magnitude
of the gravitational field as you go from the
earth’s surface to a height of 20 m?

6. (a) What are the magnitude and direction of
the electric field 0.6 m to the right of a +5 nC
charge?

(b) Compare the magnitude and direction of
the field to the result of Example 6, and explain
the difference.

7.

A P B

+-

There is a negative charge at the point A and
a positive charge at the point B.

A charge of −3 nC is at the point P, where
the electric field is 15 N/C to the left.

(a) What are the magnitude and direction of
the force on the charge at P◦?

(b) Which of the following statements is
correct?

(i) The net charge at A is greater than the
one at B.

(ii) The net charge at B is greater than the
one at A.

(iii) It is not possible to conclude anything
about the relative magnitudes of the charges.

8. Two charges are 3 m apart. Q1 = 1 μC is on
the left and Q2 = 4 μC is on the right. Where is
the point P at which the electric field is zero?

9.
A     2 μC

16 μCC B

2 m

4 m

The figure shows a right-angled triangle with
positive charges of 2 μC and 16 μC at the corners
A and B.

(a) What is the electric field at C?
(b) What is the force on a 10 μC charge

at C?
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10. Four charges, each of 5 μC, are at the cor-
ners of a square with 4 m sides, as in the
example.

(a) All charges are positive. What are the
magnitude and direction of the electric field
halfway between Q2 and Q3?

(b) The configuration is changed so that the
magnitudes of all charges remain the same, but
Q1 and Q4 are negative and Q2 and Q3 are posi-
tive. How does the field halfway between Q3 and
Q4 compare with that found in part (a)?

11. A charge Q is at the center of a regular dodec-
ahedron. (This is a polygon with 12 equal faces,
each of which is a regular pentagon.) What is the
flux through one of the faces?

12. A sphere with radius R carries a net positive
charge, Q, uniformly spread over its surface.

(a) What is the electric field at the sphere’s
surface?

(b) What is the flux through an imaginary
spherical surface just outside the sphere?

(c) What is the flux through a spherical
surface surrounding the sphere at r = 2R?

(d) What is the electric field at this spherical
surface?

(e) How are the answers to parts a to d dif-
ferent if the same charge, Q, is spread uniformly
throughout the sphere’s volume?

13. A charge of Q = 3 μC is 2 m from an
18 m-long wire. It experiences an electric force
of 0.012 N. What is the total charge on the
wire?

14. A charge of +4 nC and mass 2 × 10−15 kg
is held at rest at a point P near a large (assume
infinite) plane with a constant charge density of
3 nC
m2 .

(a) If the charge is let go, in which direction
will it move?

(b) What is its acceleration?

15. Each of the two parallel plates of a capacitor
has a surface charge density whose magnitude is
8 nC
m2 .

(a) Draw a sketch of the plates to show the
charge distribution and the electric field lines.

(b) What is the electric field between the
plates?

(c) Describe the path of an electron that is
shot into the capacitor along a path parallel to
the plates half-way between them.

v

+ + + + + + + +

- - - -- -- -

Problems and reasoning
skill building

1. When you run a plastic comb through your
dry hair it becomes electrically charged as elec-
trons move to it from your hair. Small pieces of
paper are then attracted to the comb. Describe
the sequence of movements of charge that leads
to this attraction.

2. (a) How many electrons are there in a (neutral)
molecule of water?

(b) How many electrons are there in a liter
(= 1000 cm3 = 10−3 m3) of water? (The density
of water is 1 g/cm3. The molar mass is 18 g, i.e.,
the mass of NA (Avogadro’s number) molecules
is 18 g.)

(c) What is the charge (in C) of all the
electrons in a liter of water?

3. A sphere has a charge of +4 μC. An additional
6 × 1013 electrons are placed on the sphere. What
is the net charge now?

4. A charge Q1 = 6 μC is at the origin of an x−y
coordinate system. A charge Q2 = 4 μC is at the
point (x = 1.5 m, y = 0.6 m) and a charge Q3 =
−4 μC is at the point (x = 1.5 m, y = −0.6 m).

(a) What are the magnitude and direction of
the force of Q2 on Q1?

(b) What are the magnitude and direction of
the force of Q3 on Q1?

(c) Draw a vector diagram of the forces in
parts (a) and (b) and their sum.

(d) What are the magnitude and direction of
the net force of both Q2 and Q3 on Q1?

5. A charge is located on the x-axis at x = 0. At
x = 1 m the magnitude of the electric field, E, is
1 N/C. Make a graph of E as a function of x from
x = 0.4 to x = 5.

6. (a) Use Coulomb’s law to determine the units
of k.

(b) What is the magnitude of the electric field
at a distance of 10−9 m from a proton?

7. A charge of −3 nC experiences an electric force
of 10−7 N to the right. What are the magnitude
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and direction of the electric field at the point at
which this charge is located?

8. At every point on the surface of a sphere of
radius 0.4 m the electric field is radially outward,
with a magnitude of 20 N/C. What is the flux
through the spherical surface?

9. The flux through an imaginary spherical sur-
face is 12 Nm2/C.

(a) What can you conclude about the charge
within this surface?

(b) What can you conclude about the charge
within the spherical surface if, in addition, the
electric field is radial, with the same magnitude
at every point on the surface?

10. (a) In Example 10, part (a) there are four
+5 μC charges at the corners of a square, and
the field is zero at the center. What changes can
you make in the number, the magnitudes, and
the positions of the four charges that will leave
this result (E = 0) unchanged? What is the most
general change that you can think of?

(b) For the charges as in part (b) of Example
10, what are the magnitude and direction of the
field midway between Q2 and Q3?

11. There is a uniform electric field on both sides
of a large plane. Its magnitude is 80 N/C and its
direction is toward the plane, on each side of it.
What is the surface charge density on the plane?

12. A 100 kg sphere and a 100 g sphere outside
it are held fixed with the distance between their
centers equal to 0.5 m. Each carries a charge of
+2.5 μC. Assume that the charge on each sphere
is and remains uniformly distributed.

(a) What are the magnitude and direction of
the force on each of the spheres?

(b) What is the acceleration of each when
they are released?

(c) What will you observe when they are
released?

13. Two equal positive charges, Q1 and Q2,
each 5 μC, are 4 m from each other. The point
P is between the two charges on the line joining
them, 1 m from Q1. What are the magnitude and
direction of the field at P?

14. There is a uniform electric field of 2 ×
104 N/C in the x direction. A point charge of
4 μC is placed at the origin. What are the coor-
dinates of the point or points where the total

electric field from both the point charge and the
uniform field is zero?

15. Three equal charges, each +4 μC, are at
three corners of a square whose sides are 2 m
long. Add up the vectors representing the con-
tributions from the three charges to find the
magnitude and direction of the field at the fourth
corner of the square.

16. The two opposite surfaces of a cell mem-
brane act like the plates of an empty parallel plate
capacitor. Assume that the charge densities on
the two surfaces are ±6.5 × 10−6 C/m2.

(a) What do you need to assume before
you can calculate the electric field within the
membrane?

(b) With these assumptions, what are the
magnitude and direction of the electric field
within the membrane?

(c) What are the magnitude and direction of
the force on a singly-charged (q = +e) ion within
the membrane?

17.

A B
++
+++

A B
+

+

A B

A B

-

-

--
-

-

-

-

(a)

(b)

(c)

(d)

+

Two metal blocks, A and B, are attached
to each other with a removable metal wire. A
charged object is brought near block A. The wire
is then removed. Rank the four situations shown
in the figure in order, with the largest positive
charge remaining on B ranked first, to the most
negative last.

Multiple choice questions

1. If the distance between two positive ions is
doubled, and the charge on each is also doubled,
what will happen to the force on each?

It will
(a) stay the same,
(b) increase by a factor of 2,
(c) decrease by a factor of 2,
(d) decrease by a a factor of 4.
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2. The point P is a distance L from a uniformly-
charged sphere. The electric field at P is E. What
is the value of the electric field for each of the
following changes.

+Q

L

P

(i) Q is doubled.
(ii) L is doubled.
(iii) Both Q and L are doubled.
(a) 2E
(b) 1

2 E
(c) 4E
(d) 1

4 E

3. An electron is brought to a point 1 cm from a
positively-charged Na+ ion. A proton is brought
to a point 2 cm from an SO2−

4 ion.
(a) The force on the electron is half as large

as that on the proton.
(b) The force on the electron is four times as

large as that on the proton.
(c) The force on the proton is half as large

as that on the electron.
(d) The force on the proton is four times as

large as that on the electron.

4. Which of the following best describes why
the sublimation (transformation to the gaseous
phase) of “dry ice” (solid CO2) is not increased
in a microwave oven.

(a) Dry ice is too cold for microwaving.
(b) There are no water molecules in dry ice.
(c) Microwaves do not work with frozen

substances.

(d) Adding thermal energy does not affect
the rate of sublimation.

5.

2q2q

2q 2q

q

q

qq

(i) (ii) (iii)

2q2q q q

q

  (iv) (v) (vi)

The triangles in the figure all have the same
size, 1 unit for the vertical side and 2 units for
the horizontal side. The charges are shown on
the figure.

Rank the triangles in order of the magni-
tudes of the net force on the charge in the lower
left corner of each triangle.

6.

++
L 2L

#1 #2 #3

The figure shows three fixed charges, two of
them positive and one negative. The net force on
#3 is zero. Which of the following must be true?
(There may be more than one.)

(a) #1 carries more net charge than #3.
(b) #3 carries more net charge than #2.
(c) #1 carries more net charge than #2.
(d) #2 carries more net charge than #1.
(e) #3 carries more net charge than #1.


