
CHAPTER 9

More on Electricity: From Force to
Energy, from Field to Potential

Electric potential energy and electric potential
The electric potential
Equipotentials
Simple and ideal: the uniform field
The uniform gravitational field
Motion in a uniform field
Closer to reality: the field of a point charge
Approximate method, right result
The point charge, properly
Finding the potential energy and the potential
Starting with the sources
Moving charges

Energy transformations and electric circuits
Battery and resistor
What happens in the wire?
Resistivity: separating out the property of the material

To describe the forces between charges at rest there is only Coulomb’s law (or its
equivalent, Gauss’s law). But by using the concept of energy instead of that of
force we gain two great advantages, just as we do when we go from gravitational
force to gravitational potential energy. One is a mathematical advantage, the
other is a physical one.

The mathematical advantage is that force is a vector quantity and energy is
a scalar. Adding scalars is easy. It’s just like adding numbers. Adding vectors
is more involved and takes more effort. The physical advantage depends on a
physical law, the law of conservation of energy.

If we use energy we don’t need to know what the forces are at every
point and at every moment. We can look at just two points along the path of
a particle, say A and B. If no energy has been given to the particle between
these two points, or taken from it, then its energy at A must equal its
energy at B.

More generally, if we use the concept of energy, it doesn’t matter what
happens to a system between start and end. It doesn’t matter what the paths of
its constituents are. All we need to know is how much energy, if any, has been
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added to the system or taken away from it. Moreover, the law of conservation
of energy is not limited to physics. It is a great unifying principle that plays an
important role in every part of science.

9.1 Electric potential energy
and electric potential

The electric potential

We have seen that the concept of the electric
field takes us beyond the knowledge of the force
between two charges. It allows us to describe the
effect on a charge by many charges. It tells us
how the presence of one or more charges affects
the space around them. If we know the magni-
tude and direction of the electric field at a point,
it allows us to predict the force on any charge
that we might put there.

We would now like to make use of the
advantages that we get if we use energy rather
than force. Let’s remind ourselves of the defi-
nition of potential energy: the work done on a
system against the gravitational force is equal to
the increase in its gravitational potential energy,
and the work done against the electrical force
is equal to the increase of its electrical poten-
tial energy. (The definition tells us only about
changes in energy. Just as for gravitational poten-
tial energy, if we want a definite, absolute value,
we need to choose a reference level where the
potential energy is zero.)

We can define a new construct, one that
is related to the electric potential energy in the
same way that the electric field is related to the
electric force. It is the electric potential and it
is equal to the electric potential energy that a
charge has at a point, divided by the value of the
charge.

That gives us two quantities that describe
the space around a charge: the electric field and
the electric potential. They provide information
about two properties of the charge, namely
the electric force on it and its electric poten-
tial energy. One is a vector quantity, the other
is a scalar quantity. Together they give a more
complete description than either one alone.

Our new quantity, the electric potential, is
a property at a point in space. It is defined as
the electric potential energy that a charge Q has
(or would have) at that point, divided by the

amount of that charge, Q. If the potential energy
of a charge of Q coulombs is P joules, then the
electric potential, V , is P

Q
joules

coulomb . If Q is positive,
P and V have the same sign, but if Q is negative,
they will have opposite signs.

The unit J/C is called a volt (V). A differ-
ence in electric potential is also called a voltage
difference. When we buy a nine–volt battery, for
instance, it means that there is a potential dif-
ference, or a voltage difference, of nine volts
between the two terminals of the battery. (This
is the “nominal” value, i.e., it is approximate,
and decreases with time as the battery becomes
exhausted and the chemical processes within it
cease.)

A volt is a joule per coulomb. For each
coulomb of charge that moves through the bat-
tery, a joule of energy is transferred from the
battery (where it was stored as internal energy)
to the electrons as electric potential energy.

One more reminder: we often talk about the
gravitational potential energy of an object in the
vicinity of the earth, even though we know that
it is really the potential energy of the system con-
taining the object and the earth. Similarly we
say that a charged object has electric potential
energy. Again it is the system that we are talking
about, containing the charge on which we are
focusing, and perhaps other charges that have an
effect on it.

EXAMPLE 1

A rock whose mass is 0.5 kg is lifted through a
distance of 3 m.

(a) What is the force on the rock exerted by the
gravitational field?

(b) What is the magnitude of the work done against
the field when it is lifted?

(c) What is the increase of the gravitational poten-
tial energy when the rock is lifted?

A charge of 0.5 nC is in a uniform electric field of
12 N/C. It is moved a distance of 3 m in the direction
opposite to the field direction.
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(d) What is the force on the charge by the electric
field?

(e) What is the magnitude of the work done against
the field as the charge is moved?

(f) What is the increase in the electric potential
energy when the charge is moved?

(g) What is the increase in the electric potential
between the beginning point and the endpoint
of this path?

Ans.:
(a) Fg = Mg = (0.5)(9.8) = 4.9 N.

(b) The force, F, moving the rock is in the direction
opposite to the force of the gravitational field,
but they have the same magnitude, 4.9 N. The
work done is Fh = (4.9)(3) = 14 J.

(c) From the definition it is the same as the answer
to part (b), namely 14.7 J.

(d) Fe = QE = (0.5 × 10−9)(12) = 6 × 10−9 N.

(e) The force moving the charge is in the direc-
tion opposite to the force of the electric field,
but they have the same magnitude, 6 × 10−9 N.
The work done against the electric field is (6 ×
10−9)(3) = 18 × 10−9 J.
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(f) From the definition of electric potential energy
the answers to parts (e) and (f) are the same,
namely, 1.8 × 10−8 J.

(g) The difference in electric potential is equal to
the difference in the electric potential energy of
a charge divided by the charge, or 18×10−9

0.5×10−9 =
36 V.

Equipotentials

If we want to show how high points on a map are,
we draw contour lines. These are lines that con-
nect points that are at the same height, i.e., points
that have the same gravitational potential energy.
Similarly, on a map of charges, we can draw
equipotentials, lines that connect points that are
at the same electric potential.

What happens if we move a charge along
an equipotential? The potential energy remains
the same, and no work is done against the
electric force. That must mean that there is no
component of the electric field along the equipo-
tential. Since the field has no component along
the equipotential, it must be perpendicular to it.
Along the field lines, perpendicular to the equipo-
tentials, the potential energy and the poten-
tial change more quickly than along any other
direction.

EXAMPLE 2

12 V

15 V

A

B
C

The figure shows two equipotentials, one at 12 V and
the other at 15 V.

What is the work that needs to be done to move
a 9 nC charge from A to B? From A to C?

Ans.:
A and B are on the same equipotential. They are at the
same electric potential and it therefore takes no work
against the electric force to move them from A to B.

C is at a higher potential, and it therefore
takes work to move the charge there: it is QΔV =
(9 nC)(3 V) = 27 × 10−9 J.
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EXAMPLE 3

Go to the PhET website (http://phet.colorado.edu)
and open the simulation Charges and Fields. Select
“grid” and “show numbers.”

(a) Pull one positive charge and one negative charge
with the mouse to points along a horizontal 3 m
apart, equidistant from each side. Select “show
E-field.” Drag the blue voltage sensor so that its
crosshairs are at points 0.5 m apart along a verti-
cal line first through one of the charges and then
through the other. At each point (except right at
the charges) click “plot” to draw the equipo-
tential that includes this point. Explore other
points. If you select “direction only” it is eas-
ier to see the field vectors, but the magnitude is
no longer indicated by the intensity of the arrow
color.

Turn off “Show E-field” and pull out an
“E-field sensor.” Drag it around the screen and
observe the field arrow. What is its orientation
with respect to the equipotentials?

(b) Clear all and repeat, this time with both charges
positive and 1 m apart. Describe the equipoten-
tials close to one charge, and then far from both.

(c) Explore other charge configurations.

Ans.:
(a) The electric field is a vector field. The red arrows

on the screen show the electric field. Both the
magnitude and the direction of the field can
be seen with the “E-field sensor.” The field is
strongest close to a charge, pointing away from
a positive charge and toward a negative charge.
The equipotential lines are perpendicular to the
field lines.

(b) Close to one charge the equipotentials surround
it. Far from both the equipotentials surround
both charges.

Simple and ideal: the
uniform field

An electric field, E, is said to be uniform in
a region where it has the same magnitude and
direction at every point. No matter where in this
region we put a charge of Q coulombs, the elec-
tric force on it is the same: F = QE newtons, with
the force in the same direction as the field if Q
is positive and in the opposite direction if Q is

negative. A good example of a nearly uniform
field is that between the plates of a capacitor, as
in the last example of Chapter 8.

If we move a positive charge along a field
line in the direction opposite to the field, we have
to do work against the electric force (against the
field) and both the electric potential energy of the
charge and the electric potential increase.

E

increasing V

equipotentials

EXAMPLE 4

E

B A

C

There is a uniform field of 5 N/C in a region. A charge
of 2 × 10−4 C is moved from a point A to a point B
along an electric field line in the direction opposite to
the field, a distance of 3 m.

(a) What is the electric force on the charge at A?

(b) What is the electric force on the charge at B?

(c) What is the work done on the charge, against
the electric field, as it is moved from A to B?

(d) Which is larger, the electric potential energy at
A (PA) or at B (PB)?

(e) What is the difference in the potential energies,
PB − PA?

(f) What is the potential difference, VB − VA?

The point C is 4 m from A, in a direction at right
angles to the field. Let the potential at A be zero.

(g) What is the potential at B and at C?
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(h) What is the work that is done on a 2 × 10−4 C
charge to move it from C to A?

(i) What is the work done on this charge to move it
from C to B?

Ans.:
(a) Fe = QE = (2 × 10−4 C)(5 N/C) = 10−3 N. The

direction of the force on this positive charge is
in the same direction as the field, E.

(b) Because the field is uniform, EA = EB, and the
forces are the same.

(c) The work done is FeΔx = 10−3 N × 3 m = 3 ×
10−3 J or 3 mJ.

(d) As work is done against the field, the potential
energy increases. It is therefore larger at B than
at A.

(e) The difference in potential energy between
points A and B is equal to the work done against
the field as the charge is moved from A to B. It
is equal to 3 mJ.

(f) VB = PB
Q , VA = PA

Q . VB − VA = PB − PA
Q =

3×10−3 J
2×10−4 C

= 15 V.

(g) The line from A to C is perpendicular to the
electric field. Therefore there is no change in
potential between A and C. The points A and
C are on an equipotential.

W         =   ΔP   =     P
B
  −  P

A

=

Now find the potential at B. The work done
on a charge is equal to the force on the charge
times the distance that the charge is moved. On
a unit charge (a charge of 1 C) the force is equal
to the electric field, E, and the work done on
it is the increase in the electric potential. Here
VB − VA = EΔx.

The potential at B is higher than at A
by ΔV = EΔx = (5 N/C)(3m) = 15 J/C or 15 V.
To determine the actual value of the potentials
at B and C we have to decide on a reference level.
Here V = 0 at A, so that VC = 0 and VB = 15 V.

(h) It takes no work to move a charge along an
equipotential.

(i) Since the work to move the charge from C to A
is zero, the work to move it from C to B is the
same as to move it from A to B, i.e. (15 J/C)(2 ×
10−4 C) = 3 × 10−3 J. This is so regardless of
the particular path from C to B.

(We have assumed that the force of the elec-
tric field is the only one that has to be overcome
as the charge is moved. If there are other forces,
such as gravitation or friction, they need to be
taken into account. The values of the poten-
tial and the potential differences will still be the
same.)

The uniform gravitational field

Near the earth the gravitational force on an
object of mass M is downward and equal to Mg.
The gravitational field is the force divided by the
mass, also downward, and it is equal to g. We can
make the approximation that the field is uniform
if we ignore the curvature of the earth’s surface.
In other words, we are confining ourselves to dis-
tances so small compared to the radius of the
earth that we can treat the earth as though it were
flat. Within this approximation the gravitational
field can then be considered to be uniform, with
lines of the gravitational field that are parallel,
equally spaced, and downward.

gravitational
equipotentials
(contour lines)

y

x

a
x
 = 0

When we move an object upward, we have
to do work against the gravitational force. Both
the gravitational potential energy of the object
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and the gravitational potential increase. Since we
know of no negative masses the complication of
having two possible signs (as for positive and neg-
ative charges) does not arise in the gravitational
case.

Motion in a uniform field

We know what happens when we release an
object from rest in a gravitational field: it expe-
riences a force (Fg) in the direction of the field
(downward), whose magnitude is Mg. Its accel-
eration is also in the direction of the field, and its
magnitude is g. We can write down the expres-
sions for the velocity (v) and the displacement (y).
If we use the field direction (down) as positive,
they are v = gt and y = 1

2 gt2.
We can do the same to describe the motion

of a charge in a uniform electric field: the force
(Fe) is equal to QE. This time it is in the direc-
tion of the field only if Q is positive, and it is in
the direction opposite to the field if the charge in
negative. The acceleration is in the same direction
as the force and has the magnitude QE

M . (In the
gravitational case there is a term M both in the
numerator and the denominator, and they can-
cel.) The velocity is v = at and the displacement
is 1

2 at2.
What if the start is not from rest but with an

initial velocity v0? The force and the acceleration
remain the same. But just as in the gravitational
case the nature of the motion of a charge in an
electric field is different depending on the direc-
tion of v0. If v0 is along a field line it’s easy:
v = v0 + at, x = v0 + 1

2 at2, and the motion is
along a field line. As usual, we have to choose

v
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a direction to be positive and keep track of the
plus and minus signs.

You also remember what happens to a com-
ponent of the initial velocity that is perpendicular
to the field and the force: nothing! Since there
is no component of the acceleration in the direc-
tion perpendicular to the field, a velocity compo-
nent in that direction does not change.

In the gravitational case this is what hap-
pens when a ball or other projectile is thrown
and we neglect all other forces, such as air resis-
tance. The force and the acceleration are straight
down. The horizontal component of the initial
velocity does not change. The vertical component
changes in accord with the general relation v =
v0 + at. This is what we call projectile motion.
The path of the projectile is a parabola.

The motion of a charge in a uniform electric
field is similar. It is in a straight line along the
field if there is no initial velocity, or if v0 is also
along the field direction. The path is a parabola
if there is a component of the initial velocity that
is perpendicular to the field.

If you turn the page through 90◦, so that
the electric field vector points toward the bottom
of the page, the three paths in the figure are just
like paths of an object in a gravitational field:
the first one for an object thrown straight down,
the second one for an object thrown down at an
angle, and the third for an object thrown upward
at an angle. In each case there is a force and an
acceleration in the direction of the field. In the
second and third cases there is also a component
of the initial velocity (v0y on the figure), which
does not change because it is at right angles to
the acceleration.
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EXAMPLE 5

In the same 5 N/C uniform field as in the previous
examples, the +2 × 10−4 C charge is released from
rest at B.

(a) Describe its subsequent motion.

(b) What is its kinetic energy when it reaches A?

(c) When the charge is released, as in part (a), it
moves toward A. What change would be nec-
essary in the initial motion so that the charge
will, instead, move to C? What additional
information would be required for a detailed
calculation?

Ans.:
(a) Since the charge is positive, it experiences a force

and an acceleration in the direction of the elec-
tric field. It starts from rest and moves along the
field toward A in accord with the relations that
describe the motion of a particle with constant
acceleration.

(b) Let the potential and the potential energy of the
charge at A be zero. Its potential at B is larger by
15 V. This is the difference in potential energy
per unit charge, so that the difference in the
potential energy of the charge at the two points
is QΔV = (2 × 10−4 C)(15 J/C) = 3 × 10−3 J.

KB + PB = KA + PA, where KB = 0 and
PA = 0, so that PB = KA, i.e., the potential
energy at B is transformed to kinetic energy at
A, equal to 3 mJ.

P
B
    +    K

B         
=        P

A
     +     K

A

+             =                 +

(c) If the charge is released from rest in this uni-
form field, it moves along a field line toward
A. To move, instead, to C it has to have an
initial velocity component perpendicular to the
field. Since there is no field component and no
force component in this direction, this velocity
component does not change.

To find this component (vy) we need to know
how long the charge will take to go along the field

E

B A

C

v
y

v
y 
= v

0y

v
x
=      at2

v
x

1
2

(in the x direction) from B to A. The presence of a
velocity component in the y direction will not change
this time. It will take just as long to get to B from C.
We can then see how large the y component of the
velocity has to be for the charge to go the required
distance in the y direction.

To find the time we can use x = v0xt + 1
2 at2,

with v0x = 0. Although we know the force, we do
not know the acceleration. To go further we need
to know the mass of the charged object. Let’s say
the mass is 5 g, or 5 × 10−3 kg. Then a = F

M = QE
M =

10−3 N
5×10−3 kg

= 0.2 m/s2.

x = 1
2 at2, so that t2 = 2x

a = (2)(3)
0.2 = 30, and t =√

30 = 5.48 s.
During that time vy has to have a magnitude

such that the charged object moves the distance from
A to C of 4 m. This velocity component is constant
(since there is no acceleration in the y direction), so
that y = vyt. Hence vy = y

t = 4
5.48 = 0.73 m/s.

The path from B to C is a parabola. (If you turn
the page one-quarter turn clockwise, you see that it
looks like the path of a ball moving in a gravitational
field.)
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Closer to reality: the field
of a point charge
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The electric field lines of an individual elec-
tron or proton are radial. They are straight lines,
equally spaced, coming from or going to the
charge. This is also true for a uniformly charged
sphere, or for any other spherically symmetric
charge distribution, as we saw from our discus-
sion of Gauss’s law. In the gravitational case we
rarely deal with a point mass, but stars, plan-
ets, and moons are close to being spherically
symmetrical.

A radial field is far from uniform. Its magni-
tude gets smaller as r increases, proportional to
1
r2 . On the diagram that shows the field lines, the
lines are close to each other near Q, and become
farther apart as r increases.

We know how the electric potential energy
of a system of two positive charges (Q1 and Q2)
changes when we move Q2 closer to Q1: the defi-
nition of electric potential energy tells us that the
increase in potential energy is equal to the work
done against the electric force on Q2. The closer
we move Q2 to Q1 the more work we have to do
against the force of repulsion, and the greater is
the resulting potential energy.

When we set out to calculate the work to
move Q2 closer to Q1 we encounter an obsta-
cle: the field and the force are not constant. We
remember that work equals force times displace-
ment, but if the magnitude of the force changes,
what are we to do?
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The magnitude of the field created by Q1

is k Q1
r2 , and the magnitude of the force on Q2

is k Q1Q2
r2 . We want to calculate the work done

as we move the charge Q2 closer to Q1, from a
distance r2 to a smaller distance, r1.

The force changes as r changes and the
charge moves through the distance r2 − r1. We
can’t multiply the expressions for the force and
the distance because we don’t know what value
to use for F.

This is the kind of problem for which the
calculus was invented. It allows us to deal with

variables that change, so that we can calculate
force times distance even when the force changes.

Approximate method,
right result

There have been many attempts to calculate
the potential energy of two charges with only
algebraic methods. We will look at one of the
simplest.

Since r varies from r2 to r1, r2 will vary
from r2

2 to r2
1. The force, F1, on Q2 varies from

k Q1Q2
r2
2

to k Q1Q2
r2
1

. To get a value between the

two we might take one value from each end,
using r1r2 instead of r2 in the denominator. This
looks like a rough approximation, but it turns
out, surprisingly, to give the correct answer. The
force is then k Q1Q2

r1r2
and the distance is r2 − r1.

The work done against the repulsion is therefore
(k Q1Q2

r1r2
)(r2 − r1), which is equal to kQ1Q2

r2−r1
r1r2

or kQ1Q2( 1
r1

− 1
r2

).
Let’s look more closely at the sign of this

result for the work done. If r1 is less than r2 then
1
r1

is greater than 1
r2

, and the amount of work
is positive. This is as we expect: we have to do
(positive) work on the system to move the two
positive charges closer to each other.

The point charge, properly

r
1

r
2

F
12

A little calculus, and the use of the expres-
sion for the integral of rn that we cited near the
end of Chapter 3, allows us to get away from
guesses and approximations. For a constant force
the work is equal to the force times the displace-
ment. This is equal to the area under a curve
of force against displacement. It is still the area
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under that curve if the force changes. For a force
equal to k Q1Q2

r2 , and a displacement from r2 to

r1, the area is equal to the integral
∫ r1

r2
k Q1Q2

r2 dr.

In the expression for the force, k Q1Q2
r2 , k and

the charges are constant, so that the integral is
equal to kQ1Q2

∫ r1
r2

1
r2 dr. We only need to evalu-

ate the integral of 1
r2 (= r−2), i.e.,

∫ r1
r2

r−2dr. Since

the integral of rn is rn+1

(n+1) , the integral of r−2 is r−1

−1

or −1
r .
If the force moves the charge from r2 to r1,

we need to evaluate the integral at these two val-

ues and calculate the difference, i.e.,
(−1

r2
− −1

r1

)
,

or
(

1
r1

− 1
r2

)
. We still have to multiply this result

by kQ1Q2 to get kQ1Q2

(
1
r1

− 1
r2

)
, the same

result as before.

EXAMPLE 6

A fixed charge, Q1, of 4 μC and a second charge, Q2,
of −3 μC are initially at rest, separated by a distance
of 5 cm. The second charge moves toward the first as
a result of the Coulomb attraction, until the distance
between them is 2 cm. What is then the kinetic energy
of the negative charge?

Ans.:
As Q2 moves toward Q1, potential energy is lost, and
Q2 gains an equal amount of kinetic energy.

First, calculate the magnitude of the difference
in the potential energies. It is kQ1Q2

(
1
r1

− 1
r2

)
,

where r1 = 2 cm and r2 = 5 cm, i.e. (9 × 109)(4 ×
10−6)(3 × 10−6

(
1

2 × 10−2 − 1
5 × 10−2

)
= (0.108)(102)

(0.5 − 0.2) = 3.24 J.
As the charges move toward each other, they

lose 3.24 J of electric potential energy and gain the
same amount of kinetic energy.

Finding the potential energy
and the potential

In the previous section we used the fact that the
electric potential energy is equal to the work done
against the electric force. Can we also talk about
the actual amount of the potential energy, the
absolute potential energy? Yes, but just as for
the gravitational potential energy we need first
to choose a reference level where the potential
energy is zero.

We know that we can put it anywhere we
want, but there is one place that is used most
often when we talk about point charges: we let
the potential energy, P, be zero when the charges
are very far (infinitely far) from each other.

In the calculation of the previous section the
two charges are initially separated by the dis-
tance r2. The work done as Q2 is pushed closer
to Q1, until they are separated by a distance r1, is

kQ1Q2

(
1
r1

− 1
r2

)
. If we let r2 become very large,

1
r2

becomes very small. When r2 goes to infinity,
1
r2

goes to zero. The work done on Q2 as it moves
from infinitely far away to a distance r1 from Q1

becomes kQ1Q2( 1
r1

).
Let’s look at the definition again. The

increase in potential energy is equal to the work
done against the electric force. If we start from
the reference level, where P = 0, this will also
be the potential energy. To bring Q2 closer to
Q1 means that we have to overcome the electric
repulsion between the two positive charges. To
bring it from far away to r1 requires an amount
of work equal to k Q1Q2

r1
, and this is, there-

fore, their potential energy when they are at the
distance r1 from each other.

We have to be careful with the plus and
minus signs. If one charge is positive and the
other is negative, for example, the charges
attract, and the signs are reversed. There are
schemes to keep track of the signs in the formu-
las, but it is easier first to calculate the magni-
tude of the work or the change in the potential
energy, and to think separately about the signs.
Is the work to move a charge against the elec-
trical force positive or negative, i.e., do we have
to force them together or hold them apart? Is
the value of the potential energy increased or
decreased?

Now let’s look at the potential. We can again
call Q2 a test charge. Take it to be positive. If at a
certain point its potential energy is P, the electric
potential at that point is P

Q2
.

If there are just two charges, Q1 and Q2,
a distance r1 apart, then P = k Q1Q2

r1
, and the

potential, a distance r1 from Q1, is k Q1
r1

.
We can put our test charge at any point. If

its magnitude is Q2, and the electric force on it is
F, then the electric field at that point is E = F

Q2
.

If its electric potential energy at that point is P,
then the electric potential at that point is P

Q2
.
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Starting with the sources

If we know the sources we can start with them.
For a point charge, Q, we know that at a distance
r from it the electric field is radial, with magni-
tude k Q

r2 , outward if Q is positive and inward if Q

is negative. The potential, V , is k Q
r , with the sign

of Q, positive or negative, depending on which
kind of charge Q is. (Here we have taken the ref-
erence level P = 0 when r is infinitely large and
1
r = 0.) If Q is not a point charge, but consists
of charges distributed with spherical symmetry,
these results will still be correct outside the charge
distribution. If there are several point charges, we
have to take the fields and potentials from each,
and add them up. The electric fields are vectors.
The potentials are scalars, so that we need only
add them up like numbers (which can be positive
or negative).

EXAMPLE 7

A charge of Q1 = 4 μC is at a distance of L = 50 cm
from a charge of Q2 = −3 μC.

(a) Is there a point on the line between the two
charges where the electric potential is equal to
zero, and, if so, how far is it from Q1?

(b) Are there any other points along the line on
which the two charges are located where the
potential is zero? (To the left of Q1 or to the
right of Q2.)

Ans.:
Q

1 Q
2

x
L

Between the two charges, at a distance x from
Q1, the potential is k Q1

x + k Q2
L−x . It is equal to zero

when Q1
x = −Q2

L−x or Q1(L − x) = −Q2x, i.e., when
(4 × 10−6)(0.5 − x) = (3 × 10−6)(x) or 4(0.5 − x) =
3x. 2 − 4x = 3x, 7x = 2, and x = 0.286.

x

Q
1 Q

2

L

There is a second point where P = 0: outside
both charges, and nearer to the smaller charge, at a
point a distance x from Q2, where Q1

L+x + Q2
x = 0.

Here 4
0.5+x − 3

x = 0, 4x − 3(0.5 + x) = 0, or 4x −
1.5 − 3x = 0, so that x = 1.5 m.

(Note that there is no corresponding point on
the other side of the two charges.)

EXAMPLE 8

Four charges are at the corners of a square. What has
to be true for them so that the electric potential at the
center of the square is zero?

Ans.:

Q
2

Q
1

Q
3Q

4

L

Let the distance from each of the charges to the
center be L, and the charges Q1, Q2, Q3, and Q4. The
potential in the center is k Q1

L + k Q2
L + k Q3

L + k Q4
L or

k
L (Q1 + Q2 + Q3 + Q4). If this is to be zero, (Q1 +
Q2 + Q3 + Q4) must be zero, i.e., there must be just
as much positive as negative charge at the corners,
but otherwise it doesn’t matter what the charges are.
(Of course the electric field will be different for each
charge configuration. Under what conditions will it
be zero at the center?)

Moving charges

We know the advantages of using energy con-
cepts over those of force whenever we can. Let’s
see how we can use energy concepts when we
talk about charges moving in an electric field.
Look at a charge, Q, at a point where the poten-
tial is V1, so that its electrical potential energy is
P1 = QV1. It moves to a point where the poten-
tial is V2 and its potential energy is QV2. Its
kinetic energy at the first point is K1 and at the
second point it is K2. If there are no other energies
that we need to consider, then

P1 + K1 = P2 + K2, or

QV1 + 1
2

mv2
1 = QV2 + 1

2
mv2

2
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To use these relations we don’t need to know
anything about where there are other charges or
what the electric fields look like!

EXAMPLE 9

Bombardment with alpha particles (discovery of the
nucleus)

The bombardment of a gold foil with alpha parti-
cles from a radioactive source was a groundbreaking
experiment by Ernest Rutherford in 1911. The result
that the alpha particles rebounded showed that the
positive charge of the gold atom was concentrated in
a very small region. In fact, the experiment could not
distinguish it from a point charge. This was the first
demonstration of the existence of the atomic nucleus.

An alpha particle consists of two protons and
two neutrons. It has a charge of +2e or 3.2 × 10−19 C
and a mass of 6.65 × 10−27 kg.

An alpha particle has an initial kinetic energy
of 4 MeV. (1 MeV = 1.6 × 10−13 J.) It is shot toward
the center of a gold nucleus (Z = 79, i.e., a charge
of 79e).

(a) What is the subsequent motion of the alpha
particle?

(b) Draw a graph of the potential energy as a func-
tion of the distance between the alpha particle
and the gold nucleus. On the same graph draw
a line that represents the total energy of the alpha
particle. Show the distance of closest approach,
D, on the graph.

(c) Calculate the distance of closest approach.

Ans.:
(a) Let the system of the alpha particle and the

nucleus have zero potential energy when they are
very far from each other and the kinetic energy
is 4 MeV. The total energy is then 4 MeV.

As the alpha particle moves toward the gold
nucleus, it loses kinetic energy and gains poten-
tial energy because of the repulsion between
the two positively charged objects. It contin-
ues to gain potential energy until all of its
kinetic energy has been transformed into poten-
tial energy. It is then momentarily at rest at the
distance of closest approach (D) before rebound-
ing and moving away from the gold nucleus.
(Note that when the alpha particle gets close to
the nucleus the electrons of the gold atom are far
away, and we are ignoring them.)

(b)

K

P

E

D r

(c) If we call the initial point (far away) A and the
point of closest approach B, PA = 0, KB = 0,
and KA = 4 MeV. Since PA+KA= PB+KB, the
potential energy at the point of closest approach
is PB = KA = 4 MeV. We know that PB =
kQ1Q2

D , and we can now find D = kQ1Q2
PB

=
(9×109)(79×1.6×10−19)(2×1.6×10−19)

4×1.6×10−19 , which is equal

to 5.69 × 10−8 m or 56.9 nm.

EXAMPLE 10

Here is a similar example, but in a gravitational field.
A rocket is launched, straight up, from the sur-

face of the earth, with a velocity ve. Assume that it has
this velocity right after launch, and that the engines
then shut off so that there is no further energy input.
It moves away from the earth and eventually is so far
from the earth that the gravitational potential energy
of the earth-rocket system is zero. (Using the usual
reference level P = 0 when 1

r = 0.) Neglect any forces
other than the gravitational force of the earth.

(a) The minimum velocity that the rocket must have
at the beginning to get that far is called the escape
velocity. How large is that velocity, ve?

(b) Draw a graph of the gravitational potential
energy P as a function of the distance r. Mark on
it the total energy, E, the initial kinetic energy,
1
2 mv2

e , and the radius of the earth, Re, and on it
show the kinetic energy K of the rocket.

Ans.:
(a) The rocket starts out with a potential energy

P = −G mMe
Re

, where m is the mass of the rocket
and Me and Re are the mass and the radius of
the earth. Its initial kinetic energy is 1

2 mv2
e .

At its destination Pf = 0. If it just gets there,
without energy to spare, its kinetic energy, Kf ,
is also zero. Since both Pf and Kf are zero, so is
the total energy.

If there is no energy input, this is also the
energy at the start, i.e., −G mMe

Re
+ 1

2 mv2
e = 0 or
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1
2 mv2

e = G mMe
Re

, so that ve =
√

2GMe
Re

, which we
see to be independent of the mass of the rocket

and equal to
√

(2)(6.67×10−11)(5.97×1024)
6.38×106 , which is

equal to 1.12 × 104 m/s, or close to 7 miles per
second.

(b)

Re

r

P = –K

mve
2

E = P + K = 0

E

High-speed electrons are used in many devices.
In an X–ray tube, for instance, they hit a “target”
from which the X–rays are emitted.

Another application is the vacuum tube rec-
tifier or diode. It contains two metal electrodes.
One of them (the cathode) is heated, so that some
of its electrons are given enough energy to leave
it. The other one (the anode) is at a higher poten-
tial, so that the electrons liberated at the cathode
are accelerated toward it. Since the anode is not
heated, electrons cannot leave it, and there is cur-
rent in only one direction. If the electrons start with
negligible kinetic energy at the cathode, they will
arrive at the anode with a kinetic energy equal to
QΔV joules, where ΔV is the potential difference
between the anode and the cathode.

If the anode has a hole in it, or is in the shape
of a ring, some of the electrons, instead of slam-
ming into it, will continue to the region on the other
side of the anode where the electric field is zero, or
at least quite small. Such an arrangement is called
an electron gun.

These applications are so important that they
led to the introduction of the electron volt as a unit
of energy. We have used it before, and it is used
universally in the discussion of atomic, molecular,
and nuclear energies. One electron volt is equal
to 1.6 × 10−19 J. Hence electrons accelerated by a
potential difference of ΔV volts will gain a kinetic
energy of ΔV electron volts.

EXAMPLE 11

In a vacuum tube diode the anode voltage is 60 V.
The cathode voltage is zero, and the electrons leave
the cathode with negligible energy.

(a) What is the kinetic energy of the electrons when
they arrive at the anode? Give the answer in
joules and in electron volts.

(b) What is the speed of the electrons at the anode?

Ans.:
(a) At the cathode the potential energy of the elec-

trons, PC, is zero, and so is their kinetic
energy, KC. At the anode the potential energy is
PA = QV= (−1.6×10−19)(60)= − 9.6×10−18 J.
Since PC + KC = PA + KA, 0 = KA + PA, and
KA = −PA = 9.6 × 10−18 J or 60 eV.

(b) K = 1
2 mv2 so that v =

√
2K
m =

√
(2)(9.6×10−18

0.91×10−30 =
4.6 × 106 m/s.

9.2 Energy transformations
and electric circuits

Battery and resistor

An electric battery is a device that transforms
stored internal (“chemical”) energy to electric
potential energy. The chemical reactions inside it
produce a difference of electric potential between
its two terminals. We can use this energy by
changing it into other kinds of energy when we
make the battery part of an electric circuit.

Here is the simplest circuit: we attach a wire
to the battery between its positive and negative
terminals. As a result of the potential difference
electrons move in the wire. There is now a current
in the wire.

Here is a “schematic” diagram to represent
this circuit.

+− I

R

The symbol in the top part with the + and
− signs represents the battery. The symbol with
the lines going back and forth in the bottom part
represents the wire. Its shape is meant to indicate
that there is quite a bit of it, as in a coil of wire. It
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is called a resistor and is marked R. The straight
lines between the symbols for the battery and the
coil of wire are there only to connect them.

Since the electrons are negatively charged,
they move through the wire from the battery’s
negative terminal toward the positive one. How-
ever, as an accident of history, the electric current
is defined as the amount of positive charge pass-
ing a place in the wire in a second. If the charges
that move are actually negative (as is most often
the case, since it is the electrons that move in a
wire), the direction of what we call the current
is opposite to the direction of motion of the
charges. In other words, a current to the right can
consist of positive charges going to the right or of
negative charges going to the left. The symbol
I is used for the current, and its SI unit is the
coulomb/second, which is also called the ampere.

What happens in the wire?

You might be surprised that the current is the
same in every part of the circuit shown in the fig-
ure. In fact, you should be. There is an electric
field in the metallic wire, from the positive termi-
nal toward the negative terminal of the battery,
just as there is from any positive charge toward a
negative charge. Aren’t the electrons accelerated?
Wouldn’t that make the current larger and larger
along the direction of motion?

That’s what would happen if the wire were
an empty tube. But the wire is made of ions
(the parts of the atoms that are left behind when
the moving “free” electrons are detached). The
electrons bounce along among them, making
collisions along the way that slow them down.

Let’s see what happens to the electrons.
After each collision an electron is scattered and
goes in some new direction. This new direction
can be at any angle, and all directions are equally
probable. For all of the scattered electrons, going
in all of the equally probable directions, the aver-
age velocity is zero. We can look at a single elec-
tron that represents the average behavior of all of
them. It is as if this electron were stopped by the
collision. It is again accelerated, but has to start
over after each collision. The result is that the
average velocity of the electrons is constant, and
the current is the same in each part of the wire.

The situation is somewhat analogous to that of
falling raindrops. If they fell through empty space

they would be accelerated by the gravitational
force. (It would be very dangerous to be out-
side and to be bombarded by them!) Instead they
collide with air molecules and move much more
slowly than they would in empty space and with
constant velocity.

When the electrons collide with the ions they
slow down and give up some of their kinetic
energy. The energy is shared by the ions and is
now internal energy of the wire. This increased
internal energy is perceived by us as a higher
temperature.

Look at a coil of wire. There is a difference
between the values of the electric potential at
the two ends of the coil. This potential differ-
ence across the coil, ΔV = V2 − V1, divided by
the current, I, through the coil, is called the coil’s
resistance, R, equal to ΔV

I . The SI unit for the
resistance, equal to the volt/ampere, is called the
ohm, with the symbol Ω (Greek capital omega).

I

R V
2

V
1

ΔV

The electrons carry electric potential energy
from one part of the circuit to another. In the
battery they get energy from the internal energy
of the battery materials. In the resistor they give
up energy to the material of the wire through col-
lisions with the metal ions. This energy becomes
internal energy of the wire.

The potential difference, or voltage differ-
ence, ΔV , represents a difference in potential
energy per coulomb. A volt is a joule/coulomb.
The current is I amperes, or I coulombs/second.
IΔV is therefore the number of joules per second,
or the power in watts, transformed in the wire
from electric potential energy to internal energy
of the wire.

The resistance of a wire varies with tempera-
ture, but is otherwise constant. It is a property of
the wire. This is so for metals, but not for all other
materials. When the resistance is constant (at a
given temperature), so that it does not depend
on the current, the material is said to follow
Ohm’s law.

The resistance of metal wires used for con-
nections in circuits is usually so small that it
can be neglected. On the other hand, the energy
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+−

I

R V
1

V
2

ΔV

Q         = 

=           IR

Q ΔV   

=

dissipated in the wire (“filament”) of a light bulb
is so large that the wire gets white hot, and part
of the transformed energy is radiated away as
visible light.

One more new term: the amount of energy
that is transformed in the battery (or other
device) from some other kind of energy to elec-
tric potential energy divided by the charge that
passes through it is called its emf. A 9 volt bat-
tery has an emf of 9 volts. For each coulomb that
moves through it, 9 joules of energy are trans-
formed from stored chemical energy to electric
potential energy.

“Emf” stands for electromotive force, but
physicists tend to be reluctant to write this out,
because it is not a force at all, but an energy
divided by a charge.

EXAMPLE 12

Go to the PhET website (http://phet.colorado.edu)
and open the simulation Ohm’s Law. Set R at 140 Ω

by dragging the resistance button up and down.

(a) Change the voltage while R remains constant.
How do V and I change with respect to each
other?

(b) Change R while V remains constant. How do
I and R change with respect to each other?

Set V at 4 V. Set R at 400 and 600 Ω. For each
case calculate I and compare the result to the value
on the screen.

Go to the PhET website and open the simula-
tion Battery–resistor Circuit. Uncheck the three
buttons on the right. Set V = 12.00V and R =
0.4 Ω.

Calculate the current and compare it to the
value on the ammeter.

Click on “show inside battery” to see the
electrons being pushed (by little elves?).

Click on “show cores” to see the ions.
Reduce the voltage and observe the change in the
motion of the ions and in the temperature.

EXAMPLE 13

In a flashlight a 1.5-V battery is connected to a light
bulb.

(a) How much energy is given to each electron as
it passes through the battery? Where does this
energy come from?

(b) What happens to the electric potential energy of
the electrons as they pass through (i) the wire
and (ii) the bulb?

Ans.:
(a) Each electron gets an amount of energy, QΔV ,

whose magnitude is (1.6 × 10−19)(1.5) = 2.4 ×
10−19 J. This energy is transformed from the
battery’s internal energy to electric potential
energy.

(b) (i) If you assume that the wire has no resis-
tance there is no difference of potential across
the wire and no energy transformation. (ii) The
full potential difference is then across the bulb,
and in the bulb some of this electric potential
energy is transformed to internal energy (ther-
mal energy) of the filament and some is radiated
away as visible light.

EXAMPLE 14

A 25 Ω resistor is connected across the terminals of
a battery whose emf is 6 V.

(a) Draw a schematic diagram of the circuit.

(b) What is the potential difference across the resis-
tor?

(c) What is the current through the resistor?

(d) What is the current through the battery?

(e) What is the power generated by the battery?
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(f) What is the power dissipated in the resistor?

(g) What is the energy (in joules) transformed in the
resistor in one minute?

(h) What is the amount of energy in kilowatt-hours
(kwh) generated by the battery in one day?

Ans.:
(a)

+− I

R

(b) The potential difference across the resistor has
the same magnitude as the potential difference
across the battery. The connecting lines in the
schematic diagram are assumed to have no resis-
tance, so that there is no potential difference
across them. (ΔV = IR = 0 for them.) In an
actual circuit the wires have resistance, but it
can usually be neglected because it is much less
than the resistance of the resistors.

(c) I = ΔV
R = 6

25 = 0.24 A.

(d) The current is the same in every part of this
circuit, 0.24 A.

(e) Power = IΔV . For the battery it is equal to
EI = (0.24)(6) = 1.44 W.

(f) IΔV = 1.44 W.

(g) The power is the energy transformed per sec-
ond. In 60 s the energy transformed is therefore
(60 s)(1.44 J/s) = 8.64 J.

(h) In one day there are (24)(3600) seconds.
The energy generated in a day is therefore
(1.44)(24)(3600) J = 1.24 × 105 J.

A kilowatt-hour is the energy transformed
in an hour if the rate is 1000 W. It is
(3600)(1000) J or 3.6 × 106 J. 1.24 × 105 J =
1.24×105

3.6×106 = 0.035 kwh.

EXAMPLE 15

Two buzzers (which can be treated as resistors) are
connected, end to end, to a battery. When resistors
are connected so that there is the same current in each,
they are said to be connected in series. The emf of the

battery is 12 volts. The resistors are R1 = 6 Ω and
R2 = 9 Ω.

(a) Draw a schematic diagram for this circuit.

(b) What is the resistance of a single resistor that
could replace the two resistors without changing
the current through the battery? This is called
the “equivalent resistance,” Req.

(c) What are the potential differences across each of
the two resistors in the original circuit?

(d) What is the power dissipated in each resistor?

(e) What is the power dissipated in Req?

(f) What is the power generated in the battery?

Ans.:
(a)

+−

R
1 R

2

I I+−

R
eq

ΔV
1

ΔV
2

(b) The voltages ΔV1 and ΔV2 add up to the volt-
age ΔV across the equivalent resistance. ΔV =
IR1 + IR2 = I(R1 + R2). Req = ΔV

I = R1 + R2.

Req = R1 + R2 = 6 + 9 = 15 Ω.

(c) ΔV1 = IR1.
I = E

Req
= 12

15 = 0.8 A.
ΔV1 = (0.8)(6) = 4.8 V.
ΔV2 = (0.8)(9) = 7.2 V.
Note that ΔV1 + ΔV2 = 12 V = E.

(d) P1 = IΔV = I2R1 = (0.8)(4.8) = 3.84 W.
P2 = I2R2 = (.64)(9) = 5.76 W.
P1 + P2 = 9.60 W.

(e) P = I2Req = (.64)(15) = 9.60 W.

(f) P = EI = (12)(.8) = 9.60 W.

EXAMPLE 16

Two resistors are connected separately across the
battery. When resistors are connected so that the
potential difference is the same through each, they
are said to be connected in parallel. The emf of the
battery is 12 volts. The resistances of the two resistors
are R1 = 6 Ω and R2 = 9 Ω.

(a) Draw a schematic diagram for this circuit.

(b) What is the current through each resistor?
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(c) What is the current through the battery?

(d) What is the resistance of a single resistor that
could replace the two resistors without chang-
ing the current through the battery? This is the
equivalent resistance for the combination.

(e) What is the power dissipated in each resistor?

(f) What is the power dissipated in the equivalent
resistance?

(g) What is the power generated by the battery?

Ans.:
(a)

+−

I
1

I
2

R
1

R
2

+− I

I

R

ΔV ΔV

eq

(b) I1 = ΔV
R1

= 12
6 = 2 A.

I2 = ΔV
R2

= 12
9 = 1.33 A.

(c) The currents I1 and I2 come together to form
the current I through the battery: I = I1 + I2 =
2 + 1.33 = 3.33 A.

(d) If there were just a single resistor, Req, across the
battery, its resistance would be E

I or ΔV
I . Here

the potential difference across each resistor is the
same, but the current through each is different.
(For the series connection of the previous exam-
ple the current through each resistor is the same,
but the two voltages are different.)

Req = E
I

= 12
3.33

= 3.60 Ω.

We could also do the calculation more gen-
erally: I = ΔV

Req
= I1 + I2 = ΔV

R1
+ ΔV

R2
or 1

Req
=

1
R1

+ 1
R2

.

(e) I1ΔV = (2)(12) = 24 W, I2ΔV = (1.33)(12) =
16 W.

(f) I2Req = (3.33)2(3.60) = 40 W. [This is the sum
of the two values calculated in part (e).]

(g) EI = (12)(3.33) = 40 W.

When lights, toasters, vacuum cleaners, and
other appliances are “plugged in” at home, they

are connected in parallel. That allows each of
them to be connected independently. The “elec-
tric meter” measures the amount of energy that is
used, in kilowatt–hours, and this is what shows
up in the monthly bill.

Resistivity: separating out the
property of the material

The resistance of a wire depends on its shape,
i.e., its length and cross-sectional area, and on
the material of which it is composed. Can we sep-
arate the effect of the material’s properties from
those of the wire’s size?

Just think of the wire as a number of pieces
in series. Suppose there are five pieces, each with
a length L and a resistance R. The resistance of
the whole wire (its equivalent resistance) is 5R,
and the length is 5L. We see that the resistance
is proportional to the length.

Similarly we can think of the wire as made
up of five pieces in parallel, each with resistance
R and cross-sectional area A. The resistance of
the whole wire (its equivalent resistance) is then
R
5 . The total area is 5A. We see that the resistance
is inversely proportional to the area.

R

R

5R

5
1

In general then we can write R = ρ L
A , show-

ing the length and area dependences. The remain-
ing factor, ρ (Greek rho), depends only on the
material of the wire and its temperature. It is
called the resistivity.

EXAMPLE 17

Go to the PhET website and open the simulation
“Resistance in wire.” Vary ρ, L, A in turn to see the
effect on R. Choose values of ρ, L, and A and compare
them to the values on the screen.
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EXAMPLE 18

What is the diameter of a 2-cm-long tungsten fil-
ament in a “60 W” incandescent light bulb? (At
the operating temperature the resistivity is about
10−6 Ω cm.)

Ans.:
Since the power is P = IV , or V2

R , we can write

R = V2

P = 1102

60 = 201.7 Ω. Since R = ρ L
A , we can

write A = ρL
R = (10−6)(0.02)

201.7 = 9.9 × 10−11 m2. A =
π
4 D2, so that D2 = 1.26 × 10−10 and D = 11 ×
10−6 m = 11 μm.

9.3 Summary

Like the gravitational potential energy the elec-
tric potential energy has two great advantages.
One is that it is a scalar quantity. That makes
it much simpler to use than the gravitational
and electric forces, which are vector quantities.
The other is that when a particle moves from
one point to another, the difference in potential
energy depends only on the potential energies at
the starting point and at the end point, and not
on the particular path between the two.

When a charge moves in an electric field the
increase in electric potential energy is equal to the
work done against the electric field.

The change in the potential energy of a
charge, divided by the magnitude of the charge,
is called the change in the electric potential.

No work is done when a charge moves along
an equipotential.

In an electric field the acceleration of a
charge is along the electric field line. In a uniform
field, if the initial velocity of the charge is zero or
along the field, the charge moves along the field
line. If the charge has an initial velocity that is not
along the field it moves in a parabola. The veloc-
ity component parallel to the field changes, but
the component perpendicular to the field remains
constant.

The electric potential energy of a system of
two point charges is k Q1Q2

r , where the reference
level is taken to be at r = ∞ ( 1

r = 0). With this
reference level the potential at a distance r from
a point charge is k Q

r .

In our homes and in our other surroundings,
electric circuits are everywhere. They can have
many purposes, but their basic property is that
wires allow the transport of charges (currents),
and with them the transport of energy. The
simplest circuits consist of batteries and resistors.

The current in a wire is the charge passing a
cross section per second.

The resistance of a wire is the potential dif-
ference across the wire divided by the current
through the wire. R = ΔV

I .

If R is constant when ΔV and I vary, the
wire is said to follow Ohm’s law. (R can and
usually does vary with temperature.)

When a current passes through a resistor
some electric potential energy is changed to inter-
nal energy. The amount of power (= energy
per second) that is transformed is IΔV

[= I2R =
(ΔV)2

R

]
watts.

When two resistors are connected so that the
same current passes through both, they are said
to be connected in series. The equivalent resis-
tance of a combination of resistors in series is
their sum. Req = R1 + R2 + R3 + · · · .

When two resistors are connected so that
the potential difference across each is the same,
they are said to be connected in parallel. The
reciprocal of the equivalent resistance of a com-
bination of resistors in parallel is the sum of their
reciprocals. 1

Req
= 1

R1
+ 1

R2
+ 1

R3
+ · · · .

The resistivity, ρ, is a property of the mate-
rial of which a wire is made. A wire of length
L and cross-sectional area A has a resistance
of ρ L

A .

9.4 Review activities and
problems

Guided review

1. The electric field in a region is uniform, in the
y direction, with magnitude 12 N/C. Use the
point A (0,0) as the reference point where V =
0. For each of the points B(3, 0), C(0, 3), and
D(3, 3) (where all distances are in meters):

(a) What is the force on a +3 × 10−5 C
charge at B, C, and D?
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(b) How much work needs to be done to
move this charge from the origin to B? to C?
to D?

(c) What is the electric potential energy of
the system when the charge is at B? at C? at D?

(d) What is the electric potential at B? at C?
at D?

(e) How do the answers to the previous
parts change if the charge is negative instead of
positive?

2. Go to the PhET website and open the simu-
lation Charges and Fields. Select “grid.” Select
“show numbers” to see the length scale. Put four
positive charges at the corners of a square with
sides 1 m. Deselect “show numbers.”

(a) With the blue voltage sensor explore
the equipotentials (i) close to the charges and
(ii) outside the square and in the intermediate
regions.

What is the shape of the equipotentials as
you come close to one of the charges? Why?

(b) Use an “E-field sensor” to check what
you know to be the magnitude of the field in
the center. Explore the various regions with this
sensor.

(c) Plot the equipotentials outside the square
at regular intervals from one of the charges. What
happens to the shape of the equipotentials as
you move away from the square? Why?

(d) “Clear All” and replace the two charges
on the right with negative charges. Plot equipo-
tentials near to and far from the charges. What is
the direction of the field at the center this time?
What is it along the horizontal and vertical lines
through the center?

3. A positive charge of 3 μC is at the origin. A
negative charge with the same magnitude is 8 m
away along the x direction.

(a) What are the magnitude and direction
of the electric field at the points between the
two charges, 2, 4, and 6 m from the positive
charge?

(b) What is the electric potential at each of
these three points? (The reference point, where
V = 0, is infinitely far away.)

4. In the field of problem 1, how much work is
necessary to move an electron from C to D, from
C to A, and from C to B?

5. (a) In the field of problem 1, what is the path
of an electron released from rest at point C?

(b) How long will it take the electron to
reach point A?

(c) The electron has just the right initial
velocity at C so that its path will take it to B.
How long will it take for the electron to reach B?

6. A proton is fixed at a point. A second proton
is released from rest at a point 2 nm from the first
proton. What is its kinetic energy when it is 4 nm
from the first proton?

7. Four charges, +5 μC each, are at the corners
of a square whose sides are 2 m. What is the
potential at the center of the square?

8. Five identical charges are at the points of
a symmetrical five-pointed star, so that the dis-
tances from each charge to its neighbor are the
same and the distances from each to the center
are the same. Is it possible for the electric poten-
tial at the center to be zero? If yes, what must be
true? If not, why not?

9. A proton with initial kinetic energy 2 MeV is
shot straight at an alpha particle.

(a) Describe the motion of the proton.
(b) Draw a graph of the electric potential

energy of the proton as a function of its distance
from the α particle. Show the distance of closest
approach on the graph.

(c) Calculate the distance of closest approach.

10. A rocket is launched straight up at twice the
escape velocity. How fast is it moving when the
gravitational potential energy is zero?

11. An electron, a proton, and an alpha particle
are accelerated through the same potential dif-
ference of 50 V. What are the resulting kinetic
energy and speed of each?

12. A battery with an emf of 20 V is connected
to a lightbulb whose filament has a resistance of
400 Ω.

(a) What is the current in the circuit?
(b) The resistance is doubled by adding a sec-

ond, equal, bulb to the circuit (in series). What
is the current now?

(c) What assumptions did you have to make
to get the results for parts (a) and (b)?

(d) An ammeter is added to the circuit to
measure the current. It reads 0.020 A. This is
not the current that you calculated in part (b).
What can you conclude from this reading about
the ammeter? What should you look for in a
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different ammeter to get a result closer to that
of your calculation in part (b)?

13. A 9-V battery supplies a lamp with a current
of 5 mA. How much energy does the lamp use
in 10 s?

14.

+−
E = 30 V

20 Ω

(a) What is the voltage across the resistor?
(b) What is the current through the resistor?
(c) In what direction does the current flow

(clockwise or counterclockwise)?
(d) In what direction do the electrons move

(clockwise or counterclockwise)?
(e) How much energy is supplied by the

battery in each second?

15. Three resistors, 2 Ω, 4 Ω, and 6 Ω, and a
battery whose emf is 24 V are connected in series.

(a) What is the potential difference across
each of these four elements?

(b) What fraction of the total power is
dissipated in each of the resistors?

(c) What energy transformation takes place
in each of the four circuit elements?

16. Two electronic devices are separately plugged
in at home. Each has a resistance of 60 kΩ. (Do
the problem as if the source of emf was DC.)

(a) Are they connected in series or in
parallel?

(b) What is the current in each?
(c) How much energy is used by each in one

second?
(d) Find the equivalent resistance of the two

devices.
(e) What is the power supplied by the source

of the emf?
(f) How long would both have to be con-

nected to use 1 kw-h of energy?

17. A wire has a resistance of R Ω. A second wire
(of the same material) has half the length of the
first and twice its diameter. What (in terms of R)
is the resistance of the second wire?

18. How long must a copper wire (ρ = 1.7 ×
10−8 Ω cm) of diameter 0.2 mm be to have a
resistance of 1 Ω?

Problems and reasoning
skill building

1.

E

BA

E

D

C

2 m

2 m

2 m2 m

x

y

There is a uniform electric field of 3 N/C
in the (−y) direction, as in the figure. Take the
point A as a reference, with V = 0. What is the
potential at points B, C, and E?

2. An electron is released from rest at point A in
the field of the previous question.

(a) What is its path?
(b) What is its kinetic energy (in J and in eV)

after it has traveled 4 m?

3. Can you put charges at the corner of a square
so that both the electric field and the electric
potential at the center (with the usual reference
at infinity) are equal to zero?

4. An electron passes a point at which the poten-
tial is 5 V, with a kinetic energy of 7 eV. Some
time later it passes a point where the potential
is 8 V. What is its kinetic energy there, in eV and
in J?

5. A radio draws a current of 150 mA when
plugged into a wall socket with a voltage of
120 V. How much power does the radio use?

6. (a) A circuit consists of two similar lamps in
series across a 110 V source of emf. The cur-
rent through one lamp is 1 A. What is the current
through the other lamp?

(b) A circuit consists of two similar lamps in
parallel across a 110 V source of emf. The cur-
rent through one lamp is 1 A. What is the current
through the other lamp?

(c) What is different about the lamps in parts
(a) and in (b)? (Give a quantitative answer.)
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7. The resistance between two points in a cell is
1.6 × 1010 Ω.

(a) There is a potential difference of 60 mV
between the points. What is the current?

(b) The current consists of singly charged
Na+ ions (Q = +e). How many ions flow past
each point in 0.3 s?

8. A toaster has a resistance of 22 Ω. It takes
2 min for one slice of toast. What is the energy
that is used by the toaster in that time?

9. You have a battery and some bulbs, and you
make three circuits. Rank the circuits in order of
the largest current to the smallest, and in order
of the brightest to the dimmest.

(a) one bulb only;
(b) two bulbs in series;
(c) two bulbs in parallel.

10. A proton is shot directly at a nucleus of sulfur
(Z = 16). If it gets to within about 7 × 10−15 m
of this nucleus it will be so close as to be within
the range of the nuclear force, and can initiate a
nuclear reaction. What initial kinetic energy (in
MeV) must the proton have to achieve this?

11. In a uniform electric field of 5 N/C in the y
direction, an electron is given an initial kinetic
energy of 12 eV in the x direction.

(a) Sketch the path of the electron on a dia-
gram, on which you also show E and the initial
velocity, v0.

(b) Later the electron passes a point where
the value of y has changed by 5 cm from where
it started. What is the potential at that point?
What is the electron’s kinetic energy there? Take
the potential to be zero at the electron’s initial
position.

12.

+−

15Ω

10Ω

4Ω

20 V

A B

C

(a) What is the equivalent resistance of the
15 Ω and the 10 Ω resistors between points A
and B?

(b) What is the equivalent resistance of the
three resistors between points A and C?

(c) What is the current through the battery?
(d) A wire (with zero resistance) is connected

between points A and B. What is the current
through the battery now?

(e) Why would the analysis that you used
for part (d) fail if the question is instead to find
the current when points A and C are connected
with a wire? (In other words, which of your
assumptions would no longer be tenable?)

13.

+

   = 30 V
_

10Ω
10Ω

10Ω

B CA

(a) What is the equivalent resistance between
points B and C? Between A and C?

(b) What is the current in each part of the
circuit?

(c) What is the potential difference between
points A and B? Between points B and C? A
and C?

(d) What is the power dissipated in each
resistor? What is the power generated in the
battery?

14. A coil whose resistance is 36 Ω is connected
to a source of 120 V and immersed in 1

2�

(=500 cm3) of water at 20◦. Assume that all of
the energy produced in the coil is used to heat the
water. How long does it take to bring the water
to the boiling point?

15. A 1 cm3 copper block is used to make a wire
whose resistance is 10 Ω. What are the length and
diameter of the wire? (ρ = 1.7 × 10−8 Ω m.)

Multiple choice questions

1. Two equal light bulbs (assume that they
have the same constant resistance) are connected
across a constant 110-V source of emf, first in
parallel and then in series. The ratio of the power
developed in the parallel connection to that in the
series connection is

(a) 4
(b) 2
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(c) 1
(d) 1

2

(e) 1
4

2. The resistance of a light bulb with a metal fila-
ment increases as the temperature of its filament
changes. If we repeat the previous question, the
answer is now

(a) larger
(b)smaller
(c) the same
(d)unknown

3. Adding impurities to a metal increases its
resistivity. A certain alloy of copper has twice
the resistivity of copper. A length of wire made
of this alloy has a resistance Ra and a diam-
eter da. A copper wire with the same length
and resistance has a diameter dCu. The ratio
dCu
da

is
(a) 4
(b) 2
(c) 1
(d) 1

2

(e) 1
4

4. A resistor is connected across a battery with
constant emf. A second resistor whose resis-
tance is half as large is now connected across the
battery in parallel with the first. That changes the
total power dissipated by a factor of

(a) 1
3

(b) 1
2

(c) 3
(d) 2
(e) 1

5. The resistivity of a metal increases when the
temperature increases because of which of the
following:

(a) The electrons move faster.
(b) The metal ions vibrate with greater

energy.
(c) The electrons collide with each other

more often.
(d) More of the electrons become free to

move.
(e) More of the metal atoms become ionized.

6. How much current flows in a 6 W clock radio
plugged into a household receptacle?

(a) 50 A
(b) 660 A
(c) 50 mA

(d) 18 A
(e) 180 mA

7. A computer is connected across a 120 V
source for 10 hours. It requires an average of
0.20 A. The energy that is used is

(a) 240 J
(b) 860 J
(c) 860 kJ
(d) 14.4 kJ
(e) 24 J

Synthesis problems and projects

1. Go to the PhET website and open the simula-
tion Charges and Fields. Select “grid” and “show
E-field.”

(a) Make a horizontal line of eight nega-
tive charges, spaced five divisions apart, near the
middle of the screen. What happens to the field
direction below the line, near its middle, as you
add more and more charges?

(b) Make a line of the same number of
equally spaced positive charges, parallel to the
first, and 10 divisions away. What happens to
the field between the lines as you add more and
more charges?

(c) Plot a series of roughly equally spaced
equipotentials, about half a division apart along
a vertical line near the middle of your capacitor.
What do they tell you about what the potential
and the field are in the capacitor?

Check “clear” on the blue sensor. Check
“show numbers” and use the equipotential plot-
ter to measure the potential difference between
the two lines of charge. (Stay along a line between
the charges.) Calculate the electric field in the
middle of the capacitor from the potential dif-
ference. Now use an E-field sensor to see what
the field is. Are the two at least approximately
the same? This is, of course, not a perfect capac-
itor. What changes would be needed to make it
closer to perfect?

(d) Describe the variation of the electric
potential and the electric field as you move in
directions perpendicular and parallel to the lines
of charge between the charged lines.

(e) Compare your observations to your
expectations based on the last example in Chap-
ter 8 and Section 9.1.

2. Go to the PhET website and open the simu-
lation Circuit Construction Kit (DC only). The
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components can be moved with the mouse and
connected by placing the red circles on top of
each other. The length of the connecting wires
can be changed and they can be turned by
“pulling” on them. A component can be removed
by selecting it and pressing the backspace key on
your keyboard. A connection can be broken by
clicking on it (a yellow ring appears) and pressing
the backspace key.

Construct a circuit consisting of a battery
and a light bulb. You can tell whether you
have made the connections by seeing whether the
electrons move.

Look at “lifelike” and “schematic.” You can
also hide the electrons (select “Advanced”) and
make the schematic diagram look more like the
usual schematics. Select “show values.”

(a) Select “voltmeter.” It and its probes can
be moved with the mouse. Measure the voltage
across the battery, the bulb, and a wire.

(b) Select “ammeter.” It can then be moved
with the mouse and connected. Connect it in
the circuit so that the current goes through it (it
replaces a wire). How does the current differ in
different parts of this series circuit?

(c) Initially the connecting wires do not
have resistance. Select “advanced” to change
their resistivity. Set the resistivity slider near
the middle and measure the voltages across the
battery, the light bulb, and the wires. What is

the resistance of a wire that is about two inches
long?

3. Go to the PhET website and open the
simulation Circuit Construction Kit. (See the
more detailed instructions in the previous ques-
tion.)

(a) Construct a circuit with two light bulbs
in series with a battery and an ammeter. Measure
the voltage across each bulb and across the bat-
tery. How are they related? What is the resistance
of each bulb?

(b) Construct a circuit with two light bulbs
in parallel, connected to a battery. How many
ammeters do you need to measure all of the
currents at the same time? Measure the volt-
age across each bulb and across the battery
and all of the currents. How are the currents
related?

(c) Calculate the equivalent resistance of
each circuit. Which circuit has the greatest equiv-
alent resistance?

(d) Calculate the power dissipated in each
circuit. Which circuit uses the largest power?

(e) What happens in each of the circuits
when you unscrew a bulb? You can incorporate
a switch next to each bulb to disconnect it from
the battery.

(f) Are the lights in a house connected in
series or in parallel? Explain.


